Skip to main content

Taking a Holistic Approach to Treating Endurance Athletes

  • Chapter
  • First Online:
Endurance Sports Medicine

Abstract

Endurance athletes strive to maintain peak performance by alternating between periods of intensive training and periods of rest and recovery, which can be difficult given the nature of the requirements for endurance sports. When there is an inadequate balance of activity and rest and recovery, the likelihood of injury increases dramatically. Recent evidence suggests that endurance athletes, who are already at an increased risk for physical injury, may also be more susceptible to psychological issues and/or mental health disorders. Therefore, it is important to take an individualized and holistic approach to the treatment of each athlete to minimize the risk of injury or to assist in recovery. In this chapter, the authors discuss various preventive and recovery modalities used in their orthopedic practice that encompass the diverse and multidimensional needs of endurance athletes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BW:

Body weight

CWI:

Cold-water immersion

DN:

Dry needling

Kg:

Kilogram

MPS:

Myofascial pain syndrome

MTrP:

Myofascial trigger point

PHQ:

Personal Health Questionnaire

References

  1. Cosca DD, Navazio F. Common problems in endurance athletes. Am Fam Physician. 2007;76(2):237–44.

    PubMed  Google Scholar 

  2. Ayers DC, Franklin PD, Ring DC. The role of emotional health in functional outcomes after orthopaedic surgery: extending the biopsychosocial model to orthopaedics: AOA critical issues. J Bone Joint Surg Am. 2013;95(21):e165.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Åkesdotter C, Kenttä G, Eloranta S, Franck J. The prevalence of mental health problems in elite athletes. J Sci Med Sport. 2020;23(4):329–35.

    Article  PubMed  Google Scholar 

  4. Borrell-Carrió F, Suchman AL, Epstein RM. The biopsychosocial model 25 years later: principles, practice, and scientific inquiry. Ann Fam Med. 2004;2(6):576–82.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Raglin JS. Exercise and mental health. Beneficial and detrimental effects. Sports Med. 1990;9(6):323–9.

    Article  CAS  PubMed  Google Scholar 

  6. Onate J. Depression in ultra-endurance athletes, a review and recommendations. Sports Med Arthrosc Rev. 2019;27(1):31–4.

    Article  PubMed  Google Scholar 

  7. Hamer M, Stamatakis E, Steptoe A. Dose-response relationship between physical activity and mental health: the Scottish health survey. Br J Sports Med. 2009;43(14):1111–4.

    Article  CAS  PubMed  Google Scholar 

  8. Morgan WP, Brown DR, Raglin JS, O'Connor PJ, Ellickson KA. Psychological monitoring of overtraining and staleness. Br J Sports Med. 1987;21(3):107–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alghannam AF, Gonzalez JT, Betts JA. Restoration of muscle glycogen and functional capacity: role of Post-exercise carbohydrate and protein co-ingestion. Nutrients. 2018;10(2):253.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Papadopoulou SK. Rehabilitation nutrition for injury recovery of athletes: the role of macronutrient intake. Nutrients. 2020;12(8):2449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vitale K, Getzin A. Nutrition and supplement update for the endurance athlete: review and recommendations. Nutrients. 2019;11(6):1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moore DR. Nutrition to support recovery from endurance exercise: optimal carbohydrate and protein replacement. Curr Sports Med Rep. 2015;14(4):294–300.

    Article  PubMed  Google Scholar 

  13. Knechtle B, Jastrzębski Z, Hill L, Nikolaidis PT. Vitamin D and stress fractures in sport: preventive and therapeutic measures—a narrative review. Medicina. 2021;57(3):223.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ruohola J-P, Laaksi I, Ylikomi T, Haataja R, Mattila VM, Sahi T, et al. Association between serum 25(OH)D concentrations and bone stress fractures in Finnish young men. J Bone Miner Res. 2006;21(9):1483–8.

    Article  CAS  PubMed  Google Scholar 

  15. Davey T, Lanham-New SA, Shaw AM, Hale B, Cobley R, Berry JL, et al. Low serum 25-hydroxyvitamin D is associated with increased risk of stress fracture during Royal Marine recruit training. Osteoporos Int. 2016;27(1):171–9.

    Article  CAS  PubMed  Google Scholar 

  16. Lappe J, Cullen D, Haynatzki G, Recker R, Ahlf R, Thompson K. Calcium and vitamin D supplementation decreases incidence of stress fractures in female navy recruits. J Bone Miner Res. 2008;23(5):741–9.

    Article  CAS  PubMed  Google Scholar 

  17. Griffin KL, Knight KB, Bass MA, Valliant MW. Predisposing risk factors for stress fractures in collegiate cross-country runners. J Strength Cond Res. 2021;35(1):227–32.

    Article  PubMed  Google Scholar 

  18. Shimasaki Y, Nagao M, Miyamori T, Aoba Y, Fukushi N, Saita Y, et al. Evaluating the risk of a fifth metatarsal stress fracture by measuring the serum 25-Hydroxyvitamin D levels. Foot Ankle Int. 2016;37(3):307–11.

    Article  PubMed  Google Scholar 

  19. McCormick F, Nwachukwu BU, Provencher MT. Stress fractures in runners. Clin Sports Med. 2012;31(2):291–306.

    Article  PubMed  Google Scholar 

  20. Fischer V, Haffner-Luntzer M, Amling M, Ignatius A. Calcium and vitamin D in bone fracture healing and post-traumatic bone turnover. Eur Cells Mater. 2018;35:365–85.

    Article  CAS  Google Scholar 

  21. Rebolledo BJ, Bernard JA, Werner BC, Finlay AK, Nwachukwu BU, Dare DM, et al. The Association of Vitamin D Status in lower extremity muscle strains and Core muscle injuries at the National Football League Combine. Arthroscopy. 2018;34(4):1280–5.

    Article  PubMed  Google Scholar 

  22. Engel FA, Holmberg H, Sperlich B. Is there evidence that runners can benefit from wearing compression clothing? Sports Med. 2016;46(12):1939–52.

    Article  PubMed  Google Scholar 

  23. Engel FA, Sperlich B, Stöcker U, Wolf P, Schöffl V, Donath L. Acute responses to forearm compression of blood lactate accumulation, heart rate, perceived exertion, and muscle pain in elite climbers. Front Physiol. 2018;9:605.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Winke M, Williamson S. Comparison of a pneumatic compression device to a compression garment during recovery from DOMS. Int J Exerc Sci. 2018;11(3):375–83.

    PubMed  PubMed Central  Google Scholar 

  25. Hill J, Howatson G, van Someren K, Leeder J, Pedlar C. Compression garments and recovery from exercise-induced muscle damage: a meta-analysis. Br J Sports Med. 2014;48(18):1340–6.

    Article  PubMed  Google Scholar 

  26. Brown F, Gissan EC, Howatson G, van Someren K, Pedlar C, Hill J. Compression garments and recovery from exercise: a meta-analysis. Sports Med. 2017;47(11):2245–67.

    Article  PubMed  Google Scholar 

  27. Beliard S, Chauveau M, Moscatiello T, Cros F, Ecarnot F, Becker F. Compression garments and exercise: no influence of pressure applied. J Sports Sci Med. 2015;14(1):75–83.

    PubMed  PubMed Central  Google Scholar 

  28. Bell DR, Post EG, Biese K, Bay C, Valovich MT. Sport specialization and risk of overuse injuries: a systematic review with meta-analysis. Pediatrics. 2018;142(3):e20180657.

    Article  PubMed  Google Scholar 

  29. Pandya NK. Disparities in youth sports and barriers to participation. Curr Rev Musculoskelet Med. 2021;14(6):441–6.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Halson SL, Bartram J, West N, Stephens J, Argus CK, Driller MW, et al. Does hydrotherapy help or hinder adaptation to training in competitive cyclists? Med Sci Sports Exerc. 2014;46(8):1631–9.

    Article  PubMed  Google Scholar 

  31. Tavares F, Beaven M, Teles J, Baker D, Healey P, Smith TB, et al. Effects of chronic cold-water immersion in elite Rugby players. Int J Sports Physiol Perform. 2019;14(2):156–62.

    Article  PubMed  Google Scholar 

  32. Hohenauer E, Taeymans J, Baeyens J, Clarys P, Clijsen R. The effect of Post-exercise cryotherapy on recovery characteristics: a systematic review and meta-analysis. PLoS One. 2015;10(9):e0139028.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tavares F, Simões M, Matos B, Smth TB, Driller M. The acute and longer-term effects of cold water immersion in highly-trained volleyball athletes during an intense training block. Front Sports Act Living. 2020;2:568420.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ihsan M, Watson G, Abbiss C. What are the physiological mechanisms for Post-exercise cold water immersion in the recovery from prolonged endurance and intermittent exercise? Sports Med. 2016;46(8):1095–109.

    Article  PubMed  Google Scholar 

  35. Wilcock IM, Cronin JB, Hing WA. Physiological response to water immersion. Sports Med. 2006;36(9):747–65.

    Article  PubMed  Google Scholar 

  36. Machado AF, Ferreira PH, Micheletti JK, de Almeida AC, Lemes IR, Vanderlei FM, et al. Can water temperature and immersion time influence the effect of cold water immersion on muscle soreness? A systematic review and meta-analysis. Sports Med. 2016;46:503–14.

    Article  PubMed  Google Scholar 

  37. Shadgan B, Pakravan AH, Hoens A, Reid WD. Contrast baths, intramuscular hemodynamics, and oxygenation as monitored by near infrared spectroscopy. J Athl Train. 2018;53(8):782–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. French DN, Thompson KG, Garland SW, Barnes CA, Portas MD, Hood PE, et al. The effects of contrast bathing and compression therapy on muscular performance. Med Sci Sports Exerc. 2008;40(7):1297–306.

    Article  PubMed  Google Scholar 

  39. Vaile JM, Gill ND, J. BA. The effect of contrast water therapy on symptoms of delayed onset muscle soreness. J Strength Cond Res. 2007;21(3):697–702.

    PubMed  Google Scholar 

  40. Bieuzen F, Bleakley CM, Costello JT. Contrast water therapy and exercise induced muscle damage: a systematic review and meta-analysis. PLoS One. 2013;8(4):e62356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Higgins TR, Heazlewood IT, Climstein M. A random control trial of contrast baths and ice baths for recovery during competition in U/20 Rugby union. J Strength Cond Res. 2011;25(4):1046–51.

    Article  PubMed  Google Scholar 

  42. Higgins TR, Greene DA, Baker MK. Effects of cold water immersion and contrast water therapy for recovery from team sport: a systematic review and meta-analysis. J Strength Cond Res. 2017;31(5):1443–60.

    Article  PubMed  Google Scholar 

  43. Salazar TE, Richardson MR, Beli E, Ripsch MS, George J, Kim Y, et al. Electroacupuncture promotes central nervous system-dependent release of mesenchymal stem cells. Stem Cells. 2017;35(5):1303–15.

    Article  CAS  PubMed  Google Scholar 

  44. Berman BM, Langevin HM, Witt CM, Dubner R. Acupuncture for chronic low back pain. N Engl J Med. 2010;363(5):454–61.

    Article  CAS  PubMed  Google Scholar 

  45. Lao L, Sherman K, Suarez-Almazor ME, Huntley K, Khalsa P, Killen J. John (Jack) Acupuncture: in depth. 2015. https://www.nccih.nih.gov/health/acupuncture-in-depth.

  46. Liu S, Wang Z, Su Y, Qi L, Yang W, Fu M, et al. A neuroanatomical basis for electroacupuncture to drive the vagal-adrenal axis. Nature. 2021;598(7882):641–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu S, Wang Z-F, Su Y-S, Ray RS, Jing X-H, Wang Y-Q, et al. Somatotopic organization and intensity dependence in driving distinct NPY-expressing sympathetic pathways by electroacupuncture. Neuron. 2020;108(3):436–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pecheva E. Acupuncture activates inflammatio-regulating pathways, tames cytokine storm in mice. News & Research. 2020. https://hms.harvard.edu/news/quieting-storm#:~:text=New%20study%20shows%20acupuncture%20can,in%20mice%20with%20systemic%20inflammation.

  49. Zhen P, Zelong J, Ning T. Effect of acupuncture on rehabilitation of patients with tibiofibular fracture undergoing internal fixation. Chin J Integr Med. 2018;22(6):3717–8.

    Google Scholar 

  50. Guanglin L, Jingdong F, Yan W. Clinical role of acupuncture combined with Xuesaitong in the treatment of supracondylar fracture of the Humerus. Chin J Integr Med. 2018;22(26):3719–20.

    Google Scholar 

  51. Wang J, Wang IL, Hu R, Yao S, Su Y, Zhou S, et al. Immediate effects of acupuncture on explosive force production and stiffness in male knee joint. Int J Environ Res Public Health. 2021;18(18):9518.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Antonassi DP, Rodacki CLN, Lodovico A, Ugrinowitsch C, Rodacki ALF. Immediate effects of acupuncture on force and delayed onset of muscle soreness. Med Acupunct. 2021;33(3):203–11.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dhillon S. The acute effect of acupuncture on 20-km cycling performance. Clin J Sport Med. 2008;18(1):76–80.

    Article  PubMed  Google Scholar 

  54. Gattie E, Cleland JA, Snodgrass S. The effectiveness of trigger point dry needling for musculoskeletal conditions by physical therapists: a systematic review and meta-analysis. J Orthop Sports Phys Ther. 2017;47(3):133–49.

    Article  PubMed  Google Scholar 

  55. Pai MYB, Toma JT, Kaziyama HHS, Listik C, Galhardoni R, Yeng LT, et al. Dry needling has lasting analgesic effect in shoulder pain: a double-blind, sham-controlled trial. Pain Rep. 2021;6(2):e939.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gregory TJ, Rauchwarter SA, Feldman MD. Clinical commentary: rehabilitation using acute dry needling for injured athletes returning to sport and improving performance. Arthrosc Sports Med Rehabil. 2022;4(1):e209–e13.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kietrys DM, Palombaro KM, Azzaretto E, Hubler R, Schaller B, Schlussel JM, et al. Effectiveness of dry needling for upper-quarter myofascial pain: a systematic review and meta-analysis. J Orthop Sports Phys Ther. 2013;43(9):620–34.

    Article  PubMed  Google Scholar 

  58. Cagnie B, Dewitte V, Barbe T, Timmermans F, Delrue N, Meeus M. Physiologic effects of dry needling. Curr Pain Headache Rep. 2013;17(8):348.

    Article  PubMed  Google Scholar 

  59. Gyer G, Michael J, Tolson B. Dry needling for manual therapists: points, techniques and treatments, including electroacupuncture and advanced tendon techniques. London: Singing Dragon; 2016.

    Google Scholar 

  60. Ceballos-Laita L, Medrano-De-La-Fuente R, Estébanez-De-Miguel E, Moreno-Cerviño J, Mingo-Gómez MT, Hernando-Garijo I, et al. Effects of dry needling in Teres major muscle in elite handball athletes. A randomised controlled trial. J Clin Med. 2021;10(18):4260.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Freire V, Bureau NJ. Injectable corticosteroids: take precautions and use caution. Semin Musculoskelet Radiol. 2016;20(5):401–8.

    Article  PubMed  Google Scholar 

  62. Yasir M, Goyal A, Sonthalia S. Corticosteroid adverse effects. Treasure Island (FL): StatPearls Publishing; 2022.

    Google Scholar 

  63. Marovino T, Graves C. Iontophoresis in pain management. Pract Pain Manag. 2008;8(2)

    Google Scholar 

  64. Stefanou A, Marshall N, Holdan W, Siddiqui A. A randomized study comparing corticosteroid injection to corticosteroid iontophoresis for lateral epicondylitis. J Hand Surg [Am]. 2012;37(1):104–9.

    Article  Google Scholar 

  65. Baktir S, Ozdincler AR, Mutlu EK, Bilsel K. The short-term effectiveness of low-level laser, phonophoresis, and iontophoresis in patients with lateral epicondylosis. J Hand Ther. 2019;32(4):417–25.

    Article  PubMed  Google Scholar 

  66. Luz DC, Borba Y, Ravanello EM, Daitx RB, Döhnert MB. Iontophoresis in lateral epicondylitis: a randomized, double-blind clinical trial. J Shoulder Elb Surg. 2019;28(9):1743–9.

    Article  Google Scholar 

  67. Rigby JH, Draper DO, Johnson AW, Myrer JW, Eggett DL, Mack GW. The time course of dexamethasone delivery using iontophoresis through human skin, measured via microdialysis. J Orthop Sports Phys Ther. 2015;45(3):190–7.

    Article  PubMed  Google Scholar 

  68. Papadopoulos ES, Mani R. The role of ultrasound therapy in the Management of Musculoskeletal Soft Tissue Pain. Int J Low Extrem Wounds. 2020;19(4):350–8.

    Article  CAS  PubMed  Google Scholar 

  69. Draper DO. Facts and misfits in ultrasound therapy: steps to improve your treatment outcomes. Eur J Phys Rehabil Med. 2014;50(2):209–16.

    CAS  PubMed  Google Scholar 

  70. Aiyer R, Noori SA, Chang K-V, Jung B, Rasheed A, Bansal N, et al. Therapeutic ultrasound for chronic pain Management in Joints: a systematic review. Pain Med. 2020;21(7):1437–48.

    Article  PubMed  Google Scholar 

  71. Ulusoy A, Cerrahoglu L, Orguc S. Magnetic resonance imaging and clinical outcomes of laser therapy, ultrasound therapy, and extracorporeal shock wave therapy for treatment of plantar fasciitis: a randomized controlled trial. J Foot Ankle Surg. 2017;56(4):762–7.

    Article  PubMed  Google Scholar 

  72. Murtezani A, Ibraimi Z, Vllasolli TO, Sllamniku S, Krasniqi S, Vokrri L. Exercise and therapeutic ultrasound compared with corticosteroid injection for chronic lateral epicondylitis: a randomized controlled trial. Ortop Traumatol Rehabil. 2015;17(4):351–7.

    Article  PubMed  Google Scholar 

  73. Page MJ, Green S, Mrocki MA, Surace SJ, Deitch J, McBain B, et al. Electrotherapy modalities for rotator cuff disease. Cochrane Database Syst Rev. 2016;2016(6):CD012225.

    PubMed  PubMed Central  Google Scholar 

  74. Katzap Y, Haidukov M, Berland OM, Itzhak RB, Kalichman L. Additive effect of therapeutic ultrasound in the treatment of plantar fasciitis: a randomized controlled trial. J Orthop Sports Phys Ther. 2018;48(11):847–55.

    Article  PubMed  Google Scholar 

  75. Onal B, Turk AC, Sahin F, Kotevoglu N, Kuran B. Efficacy of therapeutic ultrasound in treatment of adhesive capsulitis: a prospective double blind placebo-controlled randomized trial. J Back Musculoskelet Rehabil. 2018;31(5):955–61.

    Article  Google Scholar 

  76. Hu J, Qu J, Xu D, Zhang T, Qin L, Lu H. Combined application of low-intensity pulsed ultrasound and functional electrical stimulation accelerates bone-tendon junction healing in a rabbit model. J Orthop Res. 2014;32(2):204–9.

    Article  PubMed  Google Scholar 

  77. Yan C, Xiong Y, Chen L, Endo Y, Hu L, Liu M, et al. A comparative study of the efficacy of ultrasonics and extracorporeal shock wave in the treatment of tennis elbow: a meta-analysis of randomized controlled trials. J Orthop Surg Res. 2019;14(1):248.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tsai WC, Tang ST. Liang, fang-Chen effect of therapeutic ultrasound on tendons. Am J Phys Med Rehabil. 2011;90(12):1068–73.

    Article  PubMed  Google Scholar 

  79. Sparrow KJ, Finucane SD, Owen JR, Wayne JS. The effects of low-intensity ultrasound on medial collateral ligament healing in the rabbit model. Am J Sports Med. 2005;33(7):1048–56.

    Article  PubMed  Google Scholar 

  80. Draper D. Low intensity ultrasound for promoting soft tissue healing: a systematic review of the literature and medical technology. Intern Med. 2016;2(11):271.

    Google Scholar 

  81. Lu H, Qin L, Cheung W, Lee K, Wong W. Leung, Kwoksui low-intensity pulsed ultrasound accelerated bone-tendon junction healing through regulation of vascular endothelial growth factor expression and cartilage formation. Ultrasound Med Biol. 2008;34(8):1248–60.

    Article  PubMed  Google Scholar 

  82. Stanborough RJ. What is Kinesiology Tape? Healthline. 2019. https://www.healthline.com/health/kinesiology-tape#takeaway.

  83. Reneker JC, Latham L, McGlawn R, Reneker MR. Effectiveness of kinesiology tape on sports performance abilities in athletes: a systematic review. Phys Ther Sport. 2018;31:83–98.

    Article  PubMed  Google Scholar 

  84. Pamuk U, Yucesoy CA. MRI analyses show that kinesio taping affects much more than just the targeted superficial tissues and causes heterogeneous deformations within the whole limb. J Biomech. 2015;48(16):4262–70.

    Article  PubMed  Google Scholar 

  85. Williams S, Whatman C, Hume PA, Sheerin K. Kinesio taping in treatment and prevention of sports injuries. Sports Med. 2012;42(2):153–64.

    Article  PubMed  Google Scholar 

  86. Vercelli S, Ferriero G, Bravini E, Sartorio F. How much is Kinesio taping a psychological crutch? Man Ther. 2013;3:e11.

    Article  Google Scholar 

  87. Andrýsková A, Lee J-H. The guidelines for application of kinesiology tape for prevention and treatment of sports injuries. Health care. 2020;8(2):144.

    PubMed  PubMed Central  Google Scholar 

  88. Hughes L, Paton B, Rosenblatt B, Gissane C, Patterson SD. Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. Br J Sports Med. 2017;51(13):1003–11.

    Article  PubMed  Google Scholar 

  89. Koc BB, Truyens A, Heymans MJLF, Jansen EJP, Schotanus MGM. Effect of low-load blood flow restriction training after anterior cruciate ligament reconstruction: a systematic review. Int J Sports Phys Ther. 2022;17(3)

    Google Scholar 

  90. Patterson SD, Hughes L, Warmington S, Burr J, Scott BR, Owens J, et al. Blood flow restriction exercise: considerations of methodology, application, and safety. Front Physiol. 2016;10:533.

    Article  Google Scholar 

  91. Cognetti DJ, Sheean AJ, Owens JG. Blood flow restriction therapy and its use for rehabilitation and return to sport: physiology, application, and guidelines for implementation. Arthrosc Sports Med Rehab. 2022;4(1):e71–e6.

    Google Scholar 

  92. Takarada Y, Tsuruta T, Ishii N. Cooperative effects of exercise and occlusive stimuli on muscular function in low-intensity resistance exercise with moderate vascular occlusion. Jpn J Physiol. 2004;54(6):585–92.

    Article  PubMed  Google Scholar 

  93. Loenneke JP, Kim D, Fahs CA, Thiebaud RS, Abe T, Larson RD, et al. Effects of exercise with and without different degrees of blood flow restriction on torque and muscle activation. Muscle Nerve. 2015;51(5):713–21.

    Article  PubMed  Google Scholar 

  94. Hughes L, Rosenblatt B, Haddad F, Gissane C, McCarthy D, Clarke T, et al. Comparing the effectiveness of blood flow restriction and traditional heavy load resistance training in the Post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: a UK National Health Service Randomised Controlled Trial. Sports Med. 2019;49(11):1787–805.

    Article  PubMed  Google Scholar 

  95. Kilgas MA, Lytle LLM, Drum SN, Elmer SJ. Exercise with blood flow restriction to improve quadriceps function long after ACL reconstruction. Int J Sports Med. 2019;40(10):650–6.

    Article  PubMed  Google Scholar 

  96. dos Santos L, Andreatta MV, Curty VM, Marcarini WD, Ferreira LG, Barauna VG. Effects of blood flow restriction on leukocyte profile and muscle damage. Front Physiol. 2020;11:11.

    CAS  Google Scholar 

  97. Burgomaster KA, Moore DR, Schofield LM, Phillips SM, Sale DG, Gibala MJ. Resistance training with vascular occlusion: metabolic adaptations in human muscle. Med Sci Sports Exerc. 2003;35(7):1203–8.

    Article  CAS  PubMed  Google Scholar 

  98. Counts BR, Dankel SJ, Barnett BE, Kim D, Mouser JG, Allen KM, et al. Influence of relative blood flow restriction pressure on muscle activation and muscle adaptation. Muscle Nerve. 2016;53(3):438–45.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared D. Heinze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beim, G., Brena, K.R., Jones, B.H., Lindsay, A., Sterett, W., Heinze, J.D. (2023). Taking a Holistic Approach to Treating Endurance Athletes. In: Miller, T.L. (eds) Endurance Sports Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-26600-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26600-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26599-0

  • Online ISBN: 978-3-031-26600-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics