Skip to main content

Monitoring Peak Pollution Points of Water Resources with Autonomous Surface Vehicles Using a PSO-Based Informative Path Planner

  • Chapter
  • First Online:
Mobile Robot: Motion Control and Path Planning

Abstract

The preservation of water resources is an increasingly urgent issue. Therefore, monitoring the water quality of these resources is a very important task so that appropriate actions could be taken. This chapter focuses on water resource monitoring using a fleet of Autonomous Surface Vehicles equipped with sensors capable of measuring water quality parameters. The objective is to obtain the maximum points of contamination of the water resource through the exploration and exploitation of the water surface. The proposed algorithm is based on Particle Swarm Optimization (PSO) in combination with some machine learning techniques (Gaussian Process, Bayesian Optimization, among others) to address the limitations of PSO, such as premature convergence and difficulty in setting the initial values of the coefficients. To validate the performance of the algorithm, uni-modal and multi-modal benchmark functions are used in the simulation experiments. The results show that the proposed algorithm, the Enhanced GP-based PSO, based on the epsilon greedy method has the best performance for detecting water resource pollution peaks. It was also demonstrated that this algorithm is the one that generates the most accurate water quality model. However, when it comes to finding the highest pollution peak, the algorithm with the best response is the Enhanced GP-based PSO with a focus on exploitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The following video shows the ASV operating at Lago de la Vida https://www.youtube.com/watch?v=3nYzSSGeyHw.

  2. 2.

    https://scikit-learn.org/stable/.

  3. 3.

    https://deap.readthedocs.io/en/master/.

  4. 4.

    https://github.com/fmfn/BayesianOptimization.

References

  1. Arzamendia M, Espartza I, Reina DG, Toral S, Gregor D (2019) Comparison of Eulerian and Hamiltonian circuits for evolutionary-based path planning of an autonomous surface vehicle for monitoring Ypacarai lake. J Ambient Intell Humaniz Comput 10(4):1495–1507

    Article  Google Scholar 

  2. Arzamendia M, Gregor D, Reina DG, Toral SL (2019) An evolutionary approach to constrained path planning of an autonomous surface vehicle for maximizing the covered area of Ypacarai lake. Soft Comput 23(5):1723–1734

    Article  Google Scholar 

  3. Arzamendia M, Reina DG, Toral S, Gregor D, Asimakopoulou E, Bessis N (2019) Intelligent online learning strategy for an autonomous surface vehicle in lake environments using evolutionary computation. IEEE Intell Transp Syst Mag 11(4):110–125

    Article  Google Scholar 

  4. Birattari M, Kacprzyk J (2009) Tuning metaheuristics: a machine learning perspective, vol 197. Springer

    Google Scholar 

  5. Blanchard A, Sapsis T (2020) Informative path planning for anomaly detection in environment exploration and monitoring. arXiv:2005.10040

  6. Bottarelli L, Bicego M, Blum J, Farinelli A (2019) Orienteering-based informative path planning for environmental monitoring. Eng Appl Artif Intell 77:46–58

    Article  Google Scholar 

  7. CfO (2015) Transforming our world: the 2030 agenda for sustainable development. United Nations, New York, NY, USA

    Google Scholar 

  8. Cui Y, Zhong J, Yang F, Li S, Li P (2020) Multi-subdomain grouping-based particle swarm optimization for the traveling salesman problem. IEEE Access 8:227,497–227,510

    Google Scholar 

  9. Dirección General del Centro Multidisciplinario de Investigaciones Tecnológicas (CEMIT) (2018) Servicios de monitoreo de calidad de agua por campañas de muestreo en el lago ypacaraí. 2016–2018. Technical report, Universidad Nacional de Asunción (UNA)

    Google Scholar 

  10. Dirección General del Centro Multidisciplinario de Investigaciones Tecnológicas (CEMIT) (2021) Monitoreo de calidad de agua por campañas de muestreo en el lago ypacaraí 2019–2021. Technical report, Universidad Nacional de Asunción (UNA)

    Google Scholar 

  11. Duan H, Loiselle SA, Zhu L, Feng L, Zhang Y, Ma R (2015) Distribution and incidence of algal blooms in lake Taihu. Aquat Sci 77(1):9–16

    Article  Google Scholar 

  12. Feurer M, Hutter F (2019) Hyperparameter optimization. Automated machine learning. Springer, Cham, pp 3–33

    Chapter  Google Scholar 

  13. Gul F, Rahiman W, Alhady S, Ali A, Mir I, Jalil A (2021) Meta-heuristic approach for solving multi-objective path planning for autonomous guided robot using PSO-GWO optimization algorithm with evolutionary programming. J Ambient Intell Humaniz Comput 12(7):7873–7890

    Article  Google Scholar 

  14. Guo B, Hu J, Wu W, Peng Q, Wu F (2019) The Tabu_Genetic algorithm: a novel method for hyper-parameter optimization of learning algorithms. Electronics 8(5):579

    Article  Google Scholar 

  15. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, vol 4. IEEE, pp 1942–1948

    Google Scholar 

  16. Kim Y, Chung M (2019) An approach to hyperparameter optimization for the objective function in machine learning. Electronics 8(11):1267

    Article  Google Scholar 

  17. Kushner HJ (1964) A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise

    Google Scholar 

  18. Lessmann S, Caserta M, Arango IM (2011) Tuning metaheuristics: a data mining based approach for particle swarm optimization. Expert Syst Appl 38(10):12,826–12,838

    Google Scholar 

  19. López Moreira GA, Hinegk L, Salvadore A, Zolezzi G, Hölker F, Monte Domecq SRA, Bocci M, Carrer S, De Nat L, Escribá J et al (2018) Eutrophication, research and management history of the shallow Ypacaraí lake (Paraguay). Sustainability 10(7):2426

    Article  Google Scholar 

  20. Marini F, Walczak B (2015) Particle swarm optimization (PSO). A tutorial. Chemom Intell Lab Syst 149:153–165

    Article  Google Scholar 

  21. Michalak AM, Anderson EJ, Beletsky D, Boland S, Bosch NS, Bridgeman TB, Chaffin JD, Cho K, Confesor R, Daloğlu I et al (2013) Record-setting algal bloom in lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc Natl Acad Sci 110(16):6448–6452

    Article  Google Scholar 

  22. Mockus J, Tiesis V, Zilinskas A (1978) The application of Bayesian methods for seeking the extremum. Towar Glob Optim 2(117–129):2

    MATH  Google Scholar 

  23. Peralta F, Arzamendia M, Gregor D, Reina DG, Toral S (2020) A comparison of local path planning techniques of autonomous surface vehicles for monitoring applications: the Ypacarai lake case-study. Sensors 20(5):1488

    Article  Google Scholar 

  24. Peralta F, Reina DG, Toral S, Arzamendia M, Gregor D (2021) A Bayesian optimization approach for multi-function estimation for environmental monitoring using an autonomous surface vehicle: Ypacarai lake case study. Electronics 10(8):963

    Article  Google Scholar 

  25. Peralta F, Reina DG, Toral S, Arzamendia M, Gregor D (2021) A Bayesian optimization approach for water resources monitoring through an autonomous surface vehicle: The Ypacarai lake case study. IEEE Access 9:9163–9179. https://doi.org/10.1109/ACCESS.2021.3050934

    Article  Google Scholar 

  26. Peralta F, Yanes S, Reina DG, Toral S (2021) Monitoring water resources through a Bayesian optimization-based approach using multiple surface vehicles: the Ypacarai lake case study. In: 2021 IEEE congress on evolutionary computation (CEC). IEEE, pp 1511–1518

    Google Scholar 

  27. Rasmussen CE (2003) Gaussian processes in machine learning. In: Summer school on machine learning. Springer, pp 63–71

    Google Scholar 

  28. Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240–255. https://doi.org/10.1109/TEVC.2004.826071

    Article  Google Scholar 

  29. Roman I, Ceberio J, Mendiburu A, Lozano JA (2016) Bayesian optimization for parameter tuning in evolutionary algorithms. In: 2016 IEEE congress on evolutionary computation (CEC). IEEE, pp 4839–4845

    Google Scholar 

  30. Sánchez-García J, Reina DG, Toral S (2019) A distributed PSO-based exploration algorithm for a UAV network assisting a disaster scenario. Futur Gener Comput Syst 90:129–148

    Article  Google Scholar 

  31. Senthil Arumugam M, Rao M, Chandramohan A (2008) A new and improved version of particle swarm optimization algorithm with global-local best parameters. Knowl Inf Syst 16:331–357. https://doi.org/10.1007/s10115-007-0109-z

    Article  Google Scholar 

  32. Srinivas N, Krause A, Kakade SM, Seeger M (2009) Gaussian process optimization in the bandit setting: no regret and experimental design. arXiv:0912.3995

  33. Ten Kathen MJ, Flores IJ, Reina DG (2021) An informative path planner for a swarm of ASVs based on an enhanced PSO with gaussian surrogate model components intended for water monitoring applications. Electronics 10(13):1605

    Article  Google Scholar 

  34. Ten Kathen MJ, Flores IJ, Reina DG (2022) A comparison of PSO-based informative path planners for autonomous surface vehicles for water resource monitoring. In: 2022 7th international conference on machine learning technologies (ICMLT), pp 271–276

    Google Scholar 

  35. Ten Kathen MJ, Reina DG, Flores IJ (2022) A comparison of PSO-based informative path planners for detecting pollution peaks of the Ypacarai Lake with autonomous surface vehicles. In: International conference on optimization and learning, OLA’2022

    Google Scholar 

  36. Williams C, Rasmussen C (2006) Gaussian processes for machine learning, vol 2. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  37. Wu J, Chen XY, Zhang H, Xiong LD, Lei H, Deng SH (2019) Hyperparameter optimization for machine learning models based on Bayesian optimization. J Electron Sci Technol 17(1):26–40

    Google Scholar 

  38. Xin J, Li S, Sheng J, Zhang Y, Cui Y (2019) Application of improved particle swarm optimization for navigation of unmanned surface vehicles. Sensors 19(14):3096

    Article  Google Scholar 

  39. Xu H, Paerl HW, Qin B, Zhu G, Gaoa G (2010) Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic lake Taihu, China. Limnol Oceanogr 55(1):420–432

    Article  Google Scholar 

  40. Yanes S, Reina DG, Toral S (2020) A deep reinforcement learning approach for the patrolling problem of water resources through autonomous surface vehicles: the Ypacarai lake case. IEEE Access 8:204,076–204,093

    Google Scholar 

  41. Yanes S, Peralta F, Reina DG, Toral S (2021) A sample-efficiency comparison between evolutionary algorithms and deep reinforcement learning for path planning in an environmental patrolling mission. In: 2021 IEEE congress on evolutionary computation (CEC). IEEE, pp 71–78

    Google Scholar 

  42. Yanes S, Reina DG, Toral S (2021) A dimensional comparison between evolutionary algorithm and deep reinforcement learning methodologies for autonomous surface vehicles with water quality sensors. Sensors 21(8):2862

    Article  Google Scholar 

  43. Yanes S, Reina DG, Toral S (2021) A multiagent deep reinforcement learning approach for path planning in autonomous surface vehicles: the Ypacarac-lake patrolling case. IEEE Access

    Google Scholar 

  44. Yanes S, Peralta F, Córdoba AT, del Nozal ÁR, Marín ST, Reina DG (2022) An evolutionary multi-objective path planning of a fleet of ASVs for patrolling water resources. Eng Appl Artif Intell 112(104):852

    Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the regional government Junta de Andalucía under the Projects “Despliegue Inteligente de una red de Vehículos Acuáticos no Tripulados para la monitorización de Recursos Hídricos US-1257508”, and “Despliegue y Control de una Red Inteligente de Vehículos Autónomos Acuáticos para la Monitorización de Recursos Hídricos Andaluces PY18-RE0009”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micaela Jara Ten Kathen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ten Kathen, M.J., Johnson, P., Flores, I.J., Gutiérrez Reina, D. (2023). Monitoring Peak Pollution Points of Water Resources with Autonomous Surface Vehicles Using a PSO-Based Informative Path Planner. In: Azar, A.T., Kasim Ibraheem, I., Jaleel Humaidi, A. (eds) Mobile Robot: Motion Control and Path Planning. Studies in Computational Intelligence, vol 1090. Springer, Cham. https://doi.org/10.1007/978-3-031-26564-8_4

Download citation

Publish with us

Policies and ethics