Skip to main content

AI, the Overall Picture

  • Chapter
  • First Online:
AI in the Financial Markets

Part of the book series: Computational Social Sciences ((CSS))

  • 942 Accesses

Abstract

Nowadays, artificial intelligence (AI) algorithms are being designed, exploited and integrated into a wide variety of software or systems for different and heterogenous application domains. AI is definitively and progressively emerging as transversal and powerful technological paradigm, due to its ability not only to deal with big data and information, but especially because it produces, manages and exploits knowledge. Researchers and scientists are starting to explore, from several perspectives, the different and synergetic ways AI will transform heterogenous business models and every segment of all industries.

Just as electricity transformed almost everything 100 years ago, today I actually have a hard time thinking of an industry that I don’t think AI will transform in the next several years. —Andrew Ng

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • M.S. Abdullah, C. Kimble, I. Benest, R. Paige, Knowledge-based systems: a re-evaluation. J. Knowl. Manag. 10(3), 127–142 (2006). https://doi.org/10.1108/13673270610670902

    Article  Google Scholar 

  • A. Agrawal, J. Gans, A. Goldfarb, in Prediction machines: the simple economics of artificial intelligence (Harvard Business Press, 2018)

    Google Scholar 

  • R. Akerkar, P. Sajja, Knowledge-Based Systems (Jones & Bartlett Publishers Inc., USA, 2009)

    Google Scholar 

  • R.J. Amineh, H.D. Asl, Review of constructivism and social constructivism. J. Soc. Sci. Literat. Languages 1(1), 9–16 (2015)

    Google Scholar 

  • E. Brynjolfsson, A.N.D.R.E.W. Mcafee, Artificial intelligence, for real. Harv. Bus. Rev. 1, 1–31 (2017)

    Google Scholar 

  • K. Butler, Connectionism, classical cognitivism and the relation between cognitive and implementational levels of analysis. Philos. Psychol. 6(3), 321–333 (1993). https://doi.org/10.1080/09515089308573095

    Article  Google Scholar 

  • D. Fasko Jr., An analysis of multiple intelligences theory and its use with the gifted and talented. Roeper Rev. 23(3), 126–130 (2001)

    Article  Google Scholar 

  • N. Fleming, How artificial intelligence is changing drug discovery. Nature 557(7706), S55–S55 (2018)

    Article  Google Scholar 

  • J.A. Fodor, Precis of the modularity of mind. Behav. Brain Sci. 8(1), 1–5 (1985)

    Article  Google Scholar 

  • C.B. Frey, M.A. Osborne, The future of employment: how susceptible are jobs to computerisation? Technol. Forecast. Soc. Chang. 114, 254–280 (2017)

    Article  Google Scholar 

  • A. Garnham, Cognitivism. in The Routledge Companion to Philosophy of Psychology (Routledge, 2019), pp. 99–110

    Google Scholar 

  • Gartner, Gartner top 10 strategic technology trends for 2020. Gartner (2021). https://www.gartner.com/en/information-technology/insights/top-technology-trends. Last Accessed 14 Aug 2022

  • L. Gunderson, L.S. Siegel, The evils of the use of IQ tests to define learning disabilities in first-and second-language learners. Read. Teach. 55(1), 48–55 (2001)

    Google Scholar 

  • N. Haefner, J. Wincent, V. Parida, O. Gassmann, Artificial intelligence and innovation management: a review, framework, and research agenda✰. Technol. Forecast. Soc. Chang. 162, 120392 (2021)

    Article  Google Scholar 

  • F. Van Harmelen, V. Lifschitz, B. Porter (Eds.), in Handbook of knowledge representation, vol 2 (Elsevier, 2008), pp. 1–1006

    Google Scholar 

  • IDC, Worldwide semiannual artificial intelligence tracker (International Data Corporation, 2022)

    Google Scholar 

  • L. James, L. James, S. Stuart, N. Roger, L.H. Christopher, Artificial intelligence: a general survey (Science Research Council, 1973)

    Google Scholar 

  • S. Ji, S. Pan, E. Cambria, P. Marttinen, S.Y. Philip, A survey on knowledge graphs: representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. 33(2), 494–514 (2021)

    Article  MathSciNet  Google Scholar 

  • C.G. Langton, Studying artificial life with cellular automata. Physica D 22(1–3), 120–149 (1986)

    Article  MathSciNet  Google Scholar 

  • Weng et al., Autonomous mental development by robots and animals. Science 291, 599–600 (2001)

    Google Scholar 

  • J. Launchbury, A DARPA perspective on artificial intelligence. Technica Curiosa (2017). Online URL: https://machinelearning.technicacuriosa.com/2017/03/19/a-darpa-perspective-on-artificial-intelligence/. Last Accessed 14 Aug 2022

  • J. Lee, T. Suh, D. Roy, M. Baucus, Emerging technology and business model innovation: the case of artificial intelligence. J. Open Innov.: Technol. Market and Complexity 5(3), 44 (2019)

    Article  Google Scholar 

  • Y.G. Lyu, Artificial intelligence: enabling technology to empower society. Engineering 6(3), 205–206 (2020)

    Article  Google Scholar 

  • B. Marr, Artificial Intelligence in Practice: How 50 Successful Companies Used AI and Machine Learning to Solve Problems (Wiley, 2019)

    Google Scholar 

  • J. McCarthy, M.L. Minsky, N. Rochester, C.E. Shannon, A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI Mag. 27(4), 12–12 (2006)

    Google Scholar 

  • P. McLeod, K. Plunkett, E.T. Rolls, Introduction to Connectionist Modelling of Cognitive Processes (Oxford University Press, 1998)

    Google Scholar 

  • A. Newell, J.C. Shaw, H.A. Simon, Report on a general problem sol[ving program. in IFIP Congress, June, vol 256 (1959), pp. 64

    Google Scholar 

  • F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)

    Article  Google Scholar 

  • P. Salovey, J.D. Mayer, Emotional intelligence. Imagin. Cogn. Pers. 9(3), 185–211 (1990)

    Article  Google Scholar 

  • M. San Miguel, J.H. Johnson, J. Kertesz, K. Kaski, A. Díaz-Guilera, R.S. MacKay, D. Helbing, Challenges in complex systems science. The Europ. Phys. J. Special Topics 214(1), 245–271 (2012)

    Article  Google Scholar 

  • K. Schwab, in The fourth industrial revolution. Currency (2017)

    Google Scholar 

  • S. Shanmuganathan, Artificial neural network modelling: an introduction. in Artificial Neural Network Modelling. Studies in Computational Intelligence, ed. by S. Shanmuganathan, S. Samarasinghe, vol 628. (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-28495-8_1

  • Statista, Revenues from the artificial intelligence (AI) market worldwide from 2018 to 2025. Statista (2022)

    Google Scholar 

  • G. Von Krogh, Artificial intelligence in organizations: new opportunities for phenomenon-based theorizing. Acad. Managem. Discoveries 4, 404–409 (2018)

    Article  Google Scholar 

  • H. Wang, B. Raj, On the origin of deep learning (2017). arXiv preprint arXiv:1702.07800

  • J. Weizenbaum, ELIZA—a computer program for the study of natural language communication between man and machine. Commun. ACM 9(1), 36–45 (1966)

    Article  Google Scholar 

  • K. Westcott Grant, Netflix's data-driven strategy strengthens claim for ‘best original content’ In 2018. Forbes (2018). https://www.forbes.com/sites/kristinwestcottgrant/2018/05/28/netflixs-data-driven-strategy-strengthens-lead-for-best-original-content-in-2018/?sh=8f21fc13a94e. Last Accessed 14 Aug 2022

  • World Economic Forum, The future of jobs 2017. (World Economic Forum, 2017)

    Google Scholar 

  • J. Zhang, B. Chen, L. Zhang, X. Ke, H. Ding, Neural, symbolic and neural-symbolic reasoning on knowledge graphs. AI Open 2, 14–35 (2021)

    Article  Google Scholar 

  • M. Ziegler, E. Danay, M. Heene, J. Asendorpf, M. Bühner, Openness, fluid intelligence, and crystallized intelligence: toward an integrative model. J. Res. Pers. 46(2), 173–183 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Marconi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marconi, L. (2023). AI, the Overall Picture. In: Cecconi, F. (eds) AI in the Financial Markets . Computational Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-26518-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26518-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26517-4

  • Online ISBN: 978-3-031-26518-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics