Skip to main content

Continuous Multidimensional Systems

  • Chapter
  • First Online:
Multidimensional Signals and Systems

Abstract

Multidimensional systems with continuous variables result from the description of natural or technical systems by differential equations. Whenever not only the time evolution but also the spatial extension has to be considered, then the mathematical description comprises partial derivatives with respect to time and also partial derivatives with respect to space. At first distributed parameter systems are presented as opposed to lumped parameter systems. Their rigorous mathematical description by partial differential equations is reviewed for the linear case along with initial and boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Augustin-Louis Cauchy (1789–1857).

  2. 2.

    Peter Gustav Lejeune Dirichlet (1805–1859), Carl Gottfried Neumann (1832–1925), Victor Gustave Robin (1855–1897).

  3. 3.

    Alfred Fettweis, 1926–2015.

References

  1. Rabenstein, R., Schäfer, M.: Multidimensional Signals and Systems: Applications. Springer Nature, Heidelberg, Berlin (to appear)

    Google Scholar 

  2. Avanzini, F., Marogna, R.: A modular physically based approach to the sound synthesis of membrane percussion instruments. IEEE Transactions on Audio, Speech, and Language Processing 18(4), 891–902 (2010). https://doi.org/10.1109/TASL.2009.2036903

    Article  Google Scholar 

  3. Bernardini, A., Werner, K.J., Smith, J.O., Sarti, A.: Generalized wave digital filter realizations of arbitrary reciprocal connection networks. IEEE Transactions on Circuits and Systems I: Regular Papers 66(2), 694–707 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bilbao, S.: Wave and Scattering Methods for Numerical Simulation. John Wiley & Sons, Chichester, UK (2004)

    Book  Google Scholar 

  5. Blauert, J., Xiang, N.: Acoustics for Engineers. Springer-Verlag, Berlin (2009)

    Book  Google Scholar 

  6. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer (2011)

    MATH  Google Scholar 

  7. Bronshtein, I., Semendyayev, K., Musiol, G., Mühlig, H.: Handbook of Mathematics. Springer-Verlag, Berlin (2015)

    Book  MATH  Google Scholar 

  8. Buchberger, B., Kauers, M.: Groebner basis. Scholarpedia 5(10), 7763 (2010). https://doi.org/10.4249/scholarpedia.7763. Revision #128998

  9. Debnath, L.: Nonlinear Partial Differential Equations for Scientists and Engineers. Birkhäuser, Basel (2012)

    Google Scholar 

  10. Fettweis, A.: Wave digital filters: Theory and practice. Proceedings of the IEEE 74(2), 270–327 (1986)

    Article  Google Scholar 

  11. Franke, D.: Systeme mit örtlich verteilten Parametern. Eine Einführung in die Modellbildung, Analyse und Regelung. Hochschultext. Springer, Berlin u.a. (1987)

    Google Scholar 

  12. IEEE Std 1901-2010, Standard for broadband over power line networks: Medium access control and physical layer specifications (2010)

    Google Scholar 

  13. Kim, Y.H.: Sound Propagation. John Wiley & Sons (Asia), Singapore (2010)

    Google Scholar 

  14. Kurokawa, K.: Power waves and the scattering matrix. IEEE Transactions on Microwave Theory and Techniques 13(2), 194–202 (1965)

    Article  Google Scholar 

  15. Sauvigny, F.: Partial Differential Equations 2. Springer (2012)

    Google Scholar 

  16. Schäfer, M., Rabenstein, R., Strobl, C.: A multidimensional transfer function model for frequency dependent transmission lines. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4 (2017)

    Google Scholar 

  17. Schäfer, M., Schlecht, S.J., Rabenstein, R.: Feedback structures for a transfer function model of a circular vibrating membrane. In: Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp. 1–5. New Paltz, NY (2019)

    Google Scholar 

  18. Schäfer, M., Wicke, W., Rabenstein, R., Schober, R.: An nd model for a cylindrical diffusion-advection problem with an orthogonal force component. In: 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), pp. 1–5 (2018)

    Google Scholar 

  19. Schwerdtfeger, T., Kummert, A.: Nonlinear circuit simulation by means of Alfred Fettweis’ wave digital principles. IEEE Circuits and Systems Magazine 19(1), 55–C3 (2019)

    Article  Google Scholar 

  20. Strang, G.: Linear Algebra and its Applications, 4 edn. Thomson, Brooks/Cole (2006)

    Google Scholar 

  21. Strauss, W.A.: Partial Differential Equations. John Wiley & Sons (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rabenstein, R., Schäfer, M. (2023). Continuous Multidimensional Systems. In: Multidimensional Signals and Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-26514-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26514-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26513-6

  • Online ISBN: 978-3-031-26514-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics