Skip to main content

Technology of Secondary Cast Polycrystalline Silicon and Its Application in the Production of Solar Cells

  • Chapter
  • First Online:
Advances in Artificial Intelligence for Renewable Energy Systems and Energy Autonomy

Abstract

The technology of smelting one of the well-known modifications of multisilicon, namely, secondary cast polycrystalline silicon, is described, and options for its application for the production of a solar cell and the manufacture of heavily doped silicon substrates are described. The proposed multisilicon seems to be intentionally subjected to overdoping, which must be carried out by one or a group of impurities to the solubility limit and at the same time use a charge from a mixture of technical silicon of the highest grades. It is emphasized that the film growth as the base region of solar cells should be carried out under conditions of guaranteed suppression of autodoping by known methods. The requirements for the use of reverse technologies in the operations of obtaining raw Si during the buildup of the film base of solar cells are stated. The importance of using advanced techniques to control the process of the gas phase epitaxy of mathematical regression models has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to the famous theoretical physicist, Professor A.S. Baltenkov [62], the regression coefficients in models 1 and 2 should be rounded off. In our opinion, this should not be done, since all calculations of the efficiency of a solar cell and the growth rate of its film are fundamental in the chloride process.

References

  1. Kadyrov, A. L. (2018). Obtaining and properties of secondary cast polycrystalline silicon (p. 396). Publishing house “Nuri Marifat”.

    Google Scholar 

  2. Kadyrov, A. L. (2018). Electrophysical properties of solar and thermal energy converters based on secondary cast polycrystalline silicon. Abstract of the dissertation of Dr. f-m. Sciences. Khujand.

    Google Scholar 

  3. Berezenko, L. E., Kagan, M. B., Perova, V. I., et al. (1986). Investigation of the characteristics of photoconverters based on polycrystalline silicon. Geliotekhnika, 6, 54–57.

    Google Scholar 

  4. Bereza, V. P., & Zaks, M. B. (1982). On the issue of the influence of thermoelastic stresses on the growth of wide undeformed silicon tapes by the Stepanov method/Mater. In IX meeting on obtaining profiled crystals and products by the Stepanov method and their application in the national economy (p. 360). LIYaF.

    Google Scholar 

  5. Kondratieva, L. A., Lozovsky, V. N., et al. (1990). The use of semiconductor silicon waste in the production of ground solar cells. Geliotekhnika, 2, 40–43.

    Google Scholar 

  6. Kasatkin, V. V., Mikheeva, L. V., Sotnikov, A. M., & Pakseev, Y. B. (1985). Photoconverters based on tape polycrystalline silicon. Geliotekhnika, 5, 14.

    Google Scholar 

  7. Bilyalov, R. V., & Chirva, V. P. (1988). Influence of thermal passivation on the efficiency of silicon polycrystalline photoconverters. Geliotekhnika, 1, 2–6.

    Google Scholar 

  8. Iskanderov, A., Kravchuk, V. D., & Muminov, R. A. (1988). Acoustic-stimulated change in the photoresponse of solar cells based on ribbon silicon. Geliotekhnika, 4, 25–28.

    Google Scholar 

  9. Saidov, M. S., Bilyalov, R. V., Mukhamadiev, V. S., & Chirva, V. P. (1987). Hydrogen passivation of charge states of grain boundaries in film polycrystalline photoconverters. Geliotekhnika, 6, 18–20.

    Google Scholar 

  10. Muller, J., Barhdafi, A., Courcelle, E., et al. (1986). Passivation of polycrystalline silicon solar cells by low energy hydrogen in implantation. Solar Cells, 17(2–3), 201–231.

    Article  Google Scholar 

  11. Ashurov, M. K., Abdurakhmanov, B. M., Javkharova, N. I., Kadyrov, A. L., & Kurbonov, M. S. (2020). Some properties of raw materials from various deposits of Central Asia and new technologies for the production of technical silicon. Scientific Notes of KhSU Named After Academician Bobodzhan Gafurov – Series of Natural and Economic Sciences, 2(53), 24–29.

    Google Scholar 

  12. Ashurov, M. K., Abdurakhmanov, B. M., Javkharova, N. I., & Kadyrov, A. L. (2020). Raw materials and effective technologies for the production of technical silicon. Reports of the Academy of Sciences of the Republic of Uzbekistan, Mathematics, Technical Sciences, Natural Sciences, 2, 83–87.

    Google Scholar 

  13. Abdurakhmanov, B. M., Bilyalov, R. R., Saidov, M. S., & Chirva, V. P. (1989). Influence of irradiation in hydrogen plasma on the IR absorption spectra of polycrystalline silicon “DAN UzSSR”, 8, 24–26.

    Google Scholar 

  14. Abdurakhmanov, B. M., Aliev, R., Bilyalov, R. R., Saidov, M. S., & Saidov, A. S. (1996). Features of conversion of concentrated radiation by polycrystalline silicon solar cells. Heliotechnics, 1, 38–46.

    Google Scholar 

  15. Abdurakhmanov, B. M., Olimov, L. O., & Saidov, M. S. (2008). Electrophysical properties of solar polycrystalline silicon and its n + p structures at elevated temperatures. Applied Solar Energy, 44(1), 46–52. ISSN 0003-701X.

    Article  Google Scholar 

  16. Abdurakhmanov, B. M., Olimov, L. O., & Abdurazzakov, F. S. (2010). Microstructure of grain boundaries in polycrystalline silicon and its influence on the transport of charge carriers. Physical Surface Engineering, 8(1), 72–76.

    Google Scholar 

  17. Abdurakhmanov, B. M., Aliev, R., Olimov, L. O., Saidov, M. S., & Chirva, V. P. (1998). Some features of the formation of p-n-structures on polycrystalline silicon by ion implantation of alkali metals. Geliotekhnika, 5, 78–83.

    Google Scholar 

  18. Abdurakhmanov, B. M., Abdurazzakov, F. S., Aladyina, Z. N., Zainabidinov, S. Z., Kadyrov, A. L., Olimov, L. O., & Sidikov, V. T. (2011, May 24–26). Some properties of planar thermal energy converters based on secondary cast polycrystalline silicon. In Proceedings of the international scientific symposium “Renewable energy sources: Problems and prospects”. Khujand, Republic of Tajikistan (pp. 13–18).

    Google Scholar 

  19. Bilyalov, R. V., Saidov, M. S., & Chirva, V. P. (1990). Hydrogen passivation of polycrystalline silicon solar cells. Geliotekhnika, 4, 36–39.

    Google Scholar 

  20. Abdurakhmanov, B. M., Ashurov, H. B., & Kurbanov, M. S. Patent Ruz No. IAP 05986 Method for obtaining technical silicon and a device for its implementation.

    Google Scholar 

  21. Abdulin, K. A., & Mukashev, B. N. (1995). FTP, 29(2).

    Google Scholar 

  22. Watrins, G. D., & Troxell, J. R. (1980). Physical Review Letters, 44, 593.

    Article  Google Scholar 

  23. Kimerling, L. C., Blud, P., & Gibson, W. M. (1979). Institute of Physics Conference Series, 46, 273.

    Google Scholar 

  24. Bemski, G., Feher, G., & Gere, E. (1958). Bulletin of American Physical Society, Series II, 3, 135.

    Google Scholar 

  25. Watrins, G. D., & Corbett, J. M. (1964). Physics Review, 134, A1359.

    Article  Google Scholar 

  26. Abdurakhmanov, B. M., Ashurov, K. B., & Kurbanov, M. S. (2018). Chemical and metallurgical processing of silica into monosilane raw materials for solar energy and nanoelectronics/monograph (p. 505). Publishing house “Navroz”.

    Google Scholar 

  27. Yolkin, K. S., Zelberg, B. I., Barantsev, A. G., Yasevich, O. I., Kryuchkov, V. K., Yolkin, D. K., Yakovlev, S. P., & Balakirev, S. V. (2013). Silicon production (p. 364). MANEB.

    Google Scholar 

  28. Tolstoguzov, N. V. (1992). Theoretical foundations and technology of melting silicon and manganese alloys (p. 239). Metallurgy.

    Google Scholar 

  29. Bakhtin, A. A., Chernyakhovsky, L. V., et al. (1992). Influence of the quality of raw materials on the production of high purity silicon. Non-Ferrous Metals, 1, 29–32.

    Google Scholar 

  30. Nemchinova, N. V. (2010). Development of the theory and practice of obtaining high-purity silicon by the carbothermic method. Abstract for the degree of doctor of technical sciences, Irkutsk (p. 40).

    Google Scholar 

  31. Kolobov, G. A., Kritskaya, T. V., Moseiko, Y. V., Karpenko, A. V., & Pecheritsa, K. A. (2014). Refining metallurgical silicon to grade purity. Solnechnaya Metalurgy, 32(2), 118–126.

    Google Scholar 

  32. Yu, Z., Chen, J., Xie, G., et al. (2013). Purification of metallurgical grade silicon from aluminum by autoclave leaching. Chinese Journal of Rare Metals, 37(3), 453–460.

    Google Scholar 

  33. Sultamurat, G. I., & Gurba, G. R. (2011). Crystalline silicon smelting technology. Mechanical engineering – Traditions and innovations: A collection of proceedings of the All-Russian Youth Conference (pp. 445–446). 30.08–01.09.2011, Tomsk, TPU.

    Google Scholar 

  34. Nemchinova, N. V., Udalov, Y. P., Klets, V. E., et al. (2010). Tyutrin Study of the process of crystallization of silicon melt. In Silicon – 2010: abstracts of reports. 7th international conference on topical problems of physics, materials science, technology and diagnostics of silicon, nanometer structures and devices based on it. N. Novgorod. 06.06–06.09.2010, Nizhny Novgorod, UNN (p. 59).

    Google Scholar 

  35. Nemchinova, N. V., & Tyutrin, A. A. (2011). Study of the process of hydrometallurgical refining of silicon. In Non-ferrous metals – 2011: coll. report 3 International Congress as part of the 16th International Conference on “Aluminium of Siberia”, 5 conference on “Metallurgy of non-ferrous and rare metals”, 6th symposium “Gold of Siberia”. Krasnoyarsk, 07–09.09.2011, Krasnoyarsk, Verso (pp. 342–344).

    Google Scholar 

  36. Keqiang, X., Yi, M., Wenhui, M., et al. (2013). Extraction of titanium impurity from metallurgical silicon by HF-HCl leaching. Metallurgist, 7, 69–73.

    Google Scholar 

  37. Cai, J., Luo, X.-T., Haarberg, G. M., et al. (2012). Electrorefining of metallurgical grade silicon in molten CaCl2 based salts. Journal of the Electrochemical Society, 159(3), 155–158.

    Article  Google Scholar 

  38. Lee, J., Lee, C., & Yoon, W. (2012). Behavior of the impurity-rich phase in metallurgical grade silicon during fractional melting. Journal of Nanoscience and Nanotechnology, 12(4), 3473–3477.

    Article  Google Scholar 

  39. Shapovalov, B. A., Sheiko, I. V., Nikitenko, Y. A., et al. (2012). Induction melting and refining of silicon in a sectional crystal isotor. Modern Electrometallurgy, 4, 25–28.

    Google Scholar 

  40. Li, H., & Wan, S. (2010). Vacuum refining metallurgical grade silicon by arc plasma. Journal of University of Science and Technology of China, 40(9), 951–956.

    Google Scholar 

  41. Wang, J., Li, X., He, Y., et al. (2013). Purification of metallurgical grade silicon by a microwave-assisted plasma process. Separation and Purification Technology, 102, 82–85.

    Article  Google Scholar 

  42. Loboda, P. I., Sagaydak, Y. P. S., & Bolbut, V. V. (2011). Purification of metallurgical silicon by remelting. Solid State Physics and Chemistry, 12(2), 455–459.

    Google Scholar 

  43. Mei, P. R., et al. (2012). Purification of metallurgical silicon by horizontal zone melting. Solar Energy Materials and Solar Cells, 98, 233–239.

    Article  Google Scholar 

  44. Di, S. M., Binetti, S., Libal, J., & et al. (2011). Oxygen distribution on a multicrystalline silicon ingot grown from upgraded metallurgical silicon. Solar Energy Materials and Solar Cells, 95(2), 529–533.

    Article  Google Scholar 

  45. Ding, Z., Ma, W., Wei, K., et al. (2012). Boron removal from metallurgical-grade silicon using lithium containing slag. Journal of Non-Crystalline Solids, 358(18–19), 2708–2712.

    Article  Google Scholar 

  46. Tang, P.-P., Chen, Y.-X., Xu, M., et al. (2010). Hydrometallurgical process for the preparation of silicon grade “solar”. Chemical Engineering Journal (China), 38(11), 68–71.

    Google Scholar 

  47. A.S., No. 1163665 USSR. Certificate of authorship No. 1163665 USSR. Substrate holder for gas epitaxy. B. M. Abdurakhmanov, S. R. Boiko, B. T. Pukhov, et al. (USSR) Priority 17.01.81.

    Google Scholar 

  48. Abdurakhmanov, B. M., Abrosimova, N. I., Bilyalov, R. R., & Saidov, M. S. (1993). Photoelectric characteristics of solar cells based on cast crystalline silicon. Geliotekhnika, 1, 22–24.

    Google Scholar 

  49. Abdurakhmanov, B. M. (2021). Abstract of the dissertation. “Modernization of the electric arc process of silicon reduction and the creation of electronic devices based on it”, Tashkent.

    Google Scholar 

  50. Abdurakhmanov, B. M. Method for producing silicon. Author’s certificate of the USSR, No. 1464529.

    Google Scholar 

  51. Abdurakhmanov, B. M., Abrosimova, N. I., Saidov, M. S., Kustov, I. F., & Kharchenko, V. V. (1982). UzSSR, 9, 26–28.

    Google Scholar 

  52. Himelblau, D. (1973). Analysis of processes by static methods (p. 300). John Wiley & Sons.

    Google Scholar 

  53. Kharchenko, V. V. (1976). Issues of epitaxial silicon deposition (p. 150). Fan.

    Google Scholar 

  54. Iskandarov, S. C., Berdiev, U. F., Turdaliev, T. K., Mamirov, K. A., Ashurov, R. K., & Tulaganov, S. A. Reactor for the direct synthesis of alkoxysilanes. Application for invention no. IAP 20160120 dated 03/30/2016.

    Google Scholar 

  55. Abdurakhmanov, B. M., Ashurov, M. K., Ashurov, K. B., Kadyrov, A. L., Kurbanov, M. S., & Oksengendler, B. L. (2016). Problems and prospects of silicon production in Central Asia. Monograph (p. 420). Nuri Marifat.

    Google Scholar 

  56. Ashurov, H. B., Teak Joong, K., et al. Method for the synthesis of monosilane using trialkoxysilanes. Ruz patent No. IAP 05179, Rasmiy ahborotnoma, no. 3, dated 31.03.2016.

    Google Scholar 

  57. Ashurov, K. B. (2016). Monosilane technology for the production of polycrystalline silicon and ion-stimulated methods for the creation of silicon structures. Abstract of a doctoral dissertation. Tashkent.

    Google Scholar 

  58. Yang, S. I., Ashurov K., Salikhov, S., et al. Method for preparing trialkosilane. South Korea Patent KR 101422080(B1) Date of Patent May 14, 2014.

    Google Scholar 

  59. Yang, S. I., Ashurov, K., Salikhov, S., et al. Method for preparing trialkosilane. PRC Patent СN104797527, A Date of Patent July 16, 2014.

    Google Scholar 

  60. Naumov, A. V. (2007). Once again about the development of solar energy and the market for silicon raw materials in 2007-2010. Izv. Universities Electron Materials and Techniques, 1, 15–20.

    Google Scholar 

  61. Naumov, A. V., & Plekhanov, S. I. (1991). On the development of the semiconductor polycrystalline silicon market until 2012. Tsvetnaya Metallurgy. Rare Metals and Semiconductor Materials, 10, 38–44.

    Google Scholar 

  62. Naumov, A. V., & Rynok, A. V. (2015). Polycrystalline silicon market: State and prospects. Electronics, 9, 1–8.

    Google Scholar 

  63. Decree of the Government of the Republic of Tajikistan dated July 30, 2020, No. 427 “On the Action Plan for 2020–2025 to implement the announcement of 2020–2040 years” Twentieth anniversary of the study and development of natural, exact and mathematical subjects in the field of science and education.

    Google Scholar 

  64. Decree of the Government of the Republic of Tajikistan dated June 30, 2021, No. 263 “On the Strategy of the Republic of Tajikistan in the fields of science, technology and innovation for the period up to 2030”.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kadirov, A.L., Abdurakhmanov, B.M., Ashurov, H.B., Kharchenko, V. (2023). Technology of Secondary Cast Polycrystalline Silicon and Its Application in the Production of Solar Cells. In: Manshahia, M.S., Kharchenko, V., Weber, GW., Vasant, P. (eds) Advances in Artificial Intelligence for Renewable Energy Systems and Energy Autonomy. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-26496-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26496-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26495-5

  • Online ISBN: 978-3-031-26496-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics