Skip to main content

Abstract

In the traditional technology of smelting technical silicon, a number of problems remain unresolved that need to be addressed. This chapter describes an integrated approach to solving existing problems, which consists in the development of new technologies for the smelting of technical silicon, which can reduce energy costs, improve product quality, and reduce the severity of environmental problems of this production. The ways of increasing the profitability of carbothermal electric arc melting of technical silicon are described by returning to the process fine wastes from the preparation of charge materials and microsilica – dusty wastes from the production of silicon itself in the form of briquettes. The use of these pulverized wastes for the synthesis of liquid glass glue, in concrete and building mixtures, and for the synthesis of micro- and nanosized silicon carbide powders is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vengin, S., & Chistjakov, A. (1972). Tehnicheskij kremnij. Metallurgija. (in Russian).

    Google Scholar 

  2. Katkov, O. (1999). Vyplavka Tehnicheskogo Kremnija. IrGTU. (in Russian).

    Google Scholar 

  3. Jolkin, K., Zelberg, B., Barancev, A., Jasevich, O., Krjuchkov, V., Jolkin, D., Jakovlev, S., & Balakirev, S. (2013). Proizvodstvo kremnija. MANEB. (in Russian).

    Google Scholar 

  4. Ryss, M. (1985). Proizvodstvo ferrosplavov. Metallurgija. (in Russian).

    Google Scholar 

  5. Evseev, N., Radchenko, N., Men’shikov, P., & Begunov, A. (1988). Utilizacija pylevyh othodov pri proizvodstve kremnija. Tsvetnye metalli, 11, 64–65. (in Russian).

    Google Scholar 

  6. Tolstoguzov, N. (1992). Shema karbotermicheskogo vosstanovlenija kremnija. Tsvetnaya metallurgiya (5th ed.). Izvestija vuzov. (in Russian).

    Google Scholar 

  7. Nemchinova, N. (2013). Termodinamicheskoe modelirovanie pri izuchenii karbotermicheskogo processa polucheniya kremniya. IrGTU. (in Russian).

    Google Scholar 

  8. Ragulina, R., & Emlin, B. (1972). Jelektrotermiya kremniya i silumina. Metallurgiya. (in Russian).

    Google Scholar 

  9. Katkov, O. (1994). Izvlechenie kremnija pri vyplavke kvarcitov v dugovyh elektropechah Cvetnaja metallurgiya. Izv.Vuzov. (in Russian).

    Google Scholar 

  10. Abdurakhmanov, B., Ashurov, H., Kurbanov, M., & Nuraliev, U. (2014). Modernization of the technology for obtaining technical silicon for solar energy. Applied Solar Energy, 50, 282–286.

    Article  Google Scholar 

  11. Tolstoguzov, N., et al. (1996). Sposob vyplavki vysokokremnistogo ferrosilicija i tehnicheskogo kremniya. Patent RU 2068008.

    Google Scholar 

  12. Zavilopulo, A., Mikita, M., Mylymko, A., & Shpenik, O. (2013). Ionizacija i dissociativnaja ionizacija molekul metana. Zhurnal tehnichesko fiziki, 9, 8–14. (in Russian).

    Google Scholar 

  13. Sposob poluchenija kremnija. Avtorskoye svidetelstvo. USSR, 1579014, kl. S01 B 33/02.

    Google Scholar 

  14. Abdurahmanov, B., Ashurov, H., Kurbanov, M., & Salihov, S. (2017). Sposob poluchenija tehnicheskogo kremnija. Patent UZ IAP 05440. (in Russian).

    Google Scholar 

  15. Ashurov, M., Ashurov, K., Kurbanov, M., & Abdurahmanov, B. (2013). Optimizatsiya karbotermicheskogo protsessa vyplavki tehnicheskogo kremniya. Reports of the Academy of Sciences of Uzbekistan, 3, 26–29. (in Russian).

    Google Scholar 

  16. Abdurahmonov, B., Ashurov, H., Kurbonov, M., & Salihov, S. (2015). Sposob poluchenija ferrosilicija. Patent UZ IAP 05557. (in Russian).

    Google Scholar 

  17. Kurbanov, M. (2018). Abstract of Doctoral Dissertation (DSc) on Technical Sciences “Perfection of the technology of smelting of technical silicon and siliceous alloys”. Tashkent .

    Google Scholar 

  18. Abdurahmanov, B. (2021). Abstract of dissertation of the doctor of philosophy (Phd) on technical sciences “Modernization of the electric arc process of silicon reduction and creation of electronic devices based on it”. Tashkent.

    Google Scholar 

  19. Monsenm, B., Kolbeinsen, L., Prytz, S., Myrvagnes, V., & Tang, K. (2014). Possible use of natural gas for Silicon or Ferrosilicon production CONFERENCE 2013. In Proceeding of the thirteenth International Ferroalloys Congress, Efficient technologies in ferroalloy industry (pp. 467–478).

    Google Scholar 

  20. Chernjahovskij, L. (2014). Metallurgicheskiy kremniy iz shihtovih briketov. In CONFERENCE Kremniy– 2014, Aktualniye problemi fiziki, materialovedeniya, tehnologii kremnija, nanometrovyh struktur i priborov na ego osnove (Vol. 1, pp. 27–30) (in Russian).

    Google Scholar 

  21. Chernjahovskij, L. (2001). Rol vodoroda v karbotermicheskom vosstanovlenii metallov (4th ed.). Tsvetnye metally. (in Russian).

    Google Scholar 

  22. Gasik, M., Ljakishev, N., & Emlin, B. (1988). Teorija i tehnologija proizvodstva ferrosplavov. Metallurgija. (in Russian).

    Google Scholar 

  23. Zavilopulo, A., et al. (2013). Ionizastiya i dissotsiativnaya ionizatsiya molekul metana. J. technicheskoy fiziki, 83(9), 8–14. (in Russian).

    Google Scholar 

  24. Zavilopulo, A., et al. (2012). Osobennosti dissoziativnoy ionizatsii molekul metana. Technicheskoy fiziki, 38(20), 69–77. (in Russian).

    Google Scholar 

  25. Harchenko, V. (1976). Voprosy jepitaksialnogo osazhdenija kremnija. Fan. (in Russian).

    Google Scholar 

  26. Abdurahmanov, B., Pashkudenko, V., & Harchenko, V. (1976). Kinetika rosta jepitaksialnyh sloev kremniya v uvlazhnennom vodorode. Izvestija AN USSR. (in Russian).

    Google Scholar 

  27. Zadde, V., Stenin, V., & Strebkov, D. (2008). Patent RU 2385291. (in Russian).

    Google Scholar 

  28. Ashurov, M., Ashurov, K., Kurbanov, M., & Abdurahmanov, B. (2013). Optimizacija karbotermicheskogo processa vyplavki tehnicheskogo kremnija. Reports of the Academy of Sciences of Uzbekistan, 1(3), 26–29. (in Russian).

    Google Scholar 

  29. Abdurahmanov, B., Ashurov, H., & Kurbanov, M. (2019). Sposob poluchenija tehnicheskogo kremnija i ustrojstvo dlja ego osushhestvlenija. Patent UZ IAP 05986, Rasmij ahborotnoma. (in Russian).

    Google Scholar 

  30. Wei, L. (2016). Research on smelting process and submerged arc furnace for silico-calcium alloy. In Proceedings of the 2nd 2016 International Conference on Sustainable Development (ICSD) (Vol. 94, pp. 78–80). Atlantis Press. CONFERENCE 2016. (in Russian).

    Google Scholar 

  31. Afanas’ev, V., Gorohov, A., Gribov, B., Evdokimov, B., Zinov’ev, K., & Krasnikov, G. (2009). Sposob poluchenija kremnija vysokoj chistoty. Patent RU 2008114420/15 (in Russian).

    Google Scholar 

  32. Ashurov, M., Abdurahmanov, B., & Uskenbaev, D. (2009). Vosstanovlenie kremniya iz kremnezemnyh mineralov metodom prjamogo vysokochastotnogo plavlenija v holodnom kontejnere. Reports of the Academy of Sciences of Uzbekistan, 5(3), 32–34. (in Russian).

    Google Scholar 

  33. Kurbanov, M., Abdurahmanov, B., Ashurov, H., & Kim, E. (2016). Vozvrat melkodispersnyh othodov proizvodstva tehnicheskogo kremniya i ferrosilicija v tehnologicheskij process. In Sbornik Tezisov XI Konferencii po aktualnom problemam fiziki, materialovedeniya, tehnologii i diagnostiki kremnija, nanometrovyh struktur i priborov na ego osnove., “Kremnij – 2016”, Conference 2016 (p. 87) (in Russian).

    Google Scholar 

  34. Abdurahmanov, B., Ashurov, M., Ashurov, H., Kurbanov, M., & Nuraliev, U. (2017). Povyshenie rentabel’nosti i jekologicheskoj chistoty proizvodstva tehnicheskogo kremnija i ferrosilicija. Uzbekskij fizicheskij zhurnal, 19(5), 314–322. (in Russian).

    Google Scholar 

  35. Abdurahmanov, B., Adilov, M., Ashurov, M., Ashurov, H., Kadyrov, A., Kurbanov, M., & Nuraliev, U. (2017). Puti povyshenija jekonomicheskih i jekologicheskih pokazatelej tehnologicheskih processov vyplavki tehnicheskogo kremnija i ferrosilicija. Uchenye zapiski, 3(42), 86–101. (in Russian).

    Google Scholar 

  36. Abdurahmanov, B., Ashurov, H., & Kurbanov, M. (2018). Himiko-metallurgicheskiy peredel kremnezema v monosilanovoe syr’e dlja solnechnoj jenergetiki i nanoelektroniki. Tashkent. (in Russian).

    Google Scholar 

  37. Abdurahmanov, B., Ashurov, H., Kurbanov, M., Ashurov, M., & Tuljaganov, S. Sposob poluchenija tehnicheskogo kremniya. Patent UZ. IAP 06836. (in Russian).

    Google Scholar 

  38. Pavlov, S., Snitko, J., & Pljuhin, S. (2001). Othody i vybrosy pri proizvodstve ferrosilicija. Jelektrometallurgija, 4(1), 22–28. (in Russian).

    Google Scholar 

  39. Lohova, N., Makarova, I., & Patramanskaja, S. (2002). Obzhigovye materialy na osnove mikrokremnezema. Bratsk. (in Russian).

    Google Scholar 

  40. Kurbanov, M., Nuraliev, U., & Kurbanov, S. (2018). Ispol’zovanie mikrokremnezema v tehnologii poluchenija kremnija i ferrosilicija. Himija i himicheskie tehnologii, 1(1), 8–12.

    Google Scholar 

  41. Ashurov, M., Abdurahmanov, B., Ashurov, H., & Kurbanov, M. (2017). Ispol’zovanie mikrokremnezema v tehnologicheskih processah vyplavki tehnicheskogo kremnija i ferrosilicija. Reports of the Academy of Sciences of Uzbekistan, 2(1), 24–27. (in Russian).

    Google Scholar 

  42. Abdurahmanov, B., Ashurov, H., & Kurbonov, M. (2017). Sposob opredelenija optimal’nogo kolichestva mikrokremnezema v kremnezemnoj chasti briketiruemoj shihty dlja vyplavki tehnicheskogo kremnija ili ferrosilicija. Patent UZ IAP 05998. (in Russian).

    Google Scholar 

  43. Shitikov, E., Strockij, V., & Gordeeva, E. (2008). Issledovaniye fiziko-mekhanicheskikh svoystv vysokoprochnogo betona s dobavkoy mikrokremnezema. Tsniis, 3(1), 41–48. (in Russian).

    Google Scholar 

  44. Abdurahmanov, B., & Kurbanov, M. (2021). (in Russian)). Karbotermichekij sintez nanoporoshkov karbida kremnija s ispol’zovaniem mikrokremnezema. Uzbekskij fizicheskij zhurnal, 23(1), 57–64. https://doi.org/10.52304/.v23i1.225

    Article  Google Scholar 

  45. Kaprielov, S., Shejnfel’d, A., Gazizulin, V., & Voronov, J. (1992). Effektivniy put utilizasti ultradispersnikh produktov gazoochistki pechi. Stal, 5(1), 83–85. (in Russian).

    Google Scholar 

  46. Batrakov, V., Kaprielov, S., & Shejnfel’d, A. (1999). Modifizirovannie betony novogo pokoleniya. Beton i zhelezobeton, 2, 24–25. (in Russian).

    Google Scholar 

  47. Kaprielov, S., Shejnfel’d, A., Tverdostupov, A., & Telkov, J. (1990). Ispolzovanie otxodov proizvodstva ferrosplavov. Shahtnoe stroitel’stvo, 9, 26–28. (in Russian).

    Google Scholar 

  48. Shikirjanskij, A., Fomin, G., Pogorelov, M., Ryss, M., & Kosachev, E. (1990). Stroitel’niy rastvor. Avtorskoe svidetelstvo. USSR 1323545C. (in Russian).

    Google Scholar 

  49. Milovanova, R., Semenova, V., & Chupina, A. (1991). Stroitel’nyj rastvor. Avtorskoe svidetelstvo. USSR 637358С. (in Russian).

    Google Scholar 

  50. Karnauhov, J, & Sharova, V. (2002). Syrevaya smes dlya izgotovleniya penobetona. Patent RU 2056353. (in Russian).

    Google Scholar 

  51. Kashura, V., & Potapov, V. (2006). Sposob polucheniya vodnikh silikatov. Patent RU2320538 (in Russian).

    Google Scholar 

  52. Karnauhov, J., & Sharova, V. (1997). Sposob poluchenija zhidkogo stekla. Patent RU 2085489. (in Russian).

    Google Scholar 

  53. Rusina, V., & Tarasova, N. (2011). Sposob poluchenija zhidkogo stekla. Patent RU 2333890. (in Russian).

    Google Scholar 

  54. Abdurahmanov, B., Ashurov, M., Ashurov, H., Kurbanov, M., Nijazov, A., & Nuraliev U. (2019). Sposob poluchenija zhidkogo stekla. Patent UZ IAP 20190266. (in Russian).

    Google Scholar 

  55. Galevskij, G., Protopopov, E., & Temljancev, M. (2014). Ispol’zovaniye tekhnogennykh metallurgicheskikh otkhodov v tekhnologii karbida kremniya.Vestnik Kuzbasskogo GTU. Metallurgija, 4(104), 103–110. (in Russian).

    Google Scholar 

  56. Polyakh, O. (2014). Primenenie texnogennikh otxodov metallurgichesskich predpriytiy dlya proizvodstva karbida kremniya. Izvestiya vuzov, Chernaya metallurgiya, 57(8), 23–29. (in Russian).

    Google Scholar 

  57. Abdurahmanov, B., Nuraliev, U., Kurbanov, M., & Ashurov, H. (2021). Sposob poluchenija mikro i nanorazmernyh poroshkov karbida kremnija i ustrojstvo dlja ego osushhestvlenija. Patent UZ IAP 20210226. (in Russian).

    Google Scholar 

  58. Polyakh, O., & Rudneva, V. (2007). Mikrokremnezem v proizvodstve karbida kremnija. Nauka. (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurbanov, M., Abdurakhmanov, B.M., Ashurov, M., Kharchenko, V. (2023). New Technologies and Equipment for Smelting Technical Silicon. In: Manshahia, M.S., Kharchenko, V., Weber, GW., Vasant, P. (eds) Advances in Artificial Intelligence for Renewable Energy Systems and Energy Autonomy. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-26496-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26496-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26495-5

  • Online ISBN: 978-3-031-26496-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics