Skip to main content

Abstract

The world is relying more and more on renewable energy sources to cater the global energy demand. Consequently, the renewable energy systems are becoming more and more intricate and therefore require state-of-the-art machine learning methodologies to operate and manage. This chapter presents a detailed overview of some key applications of artificial intelligence (AI) and machine learning (ML) for renewable energy with a particular focus on the challenges, available resources, and potential future research opportunities. In detail, the chapter discusses AI and ML applications in weather forecasting, power production, energy consumption forecasting, smart grids, and prognostic maintenance of renewable energy systems. An overview of the most commonly used AI and ML algorithms in the domain along with a detailed description of some of the publicly available datasets for training and evaluation of these algorithms to carry out different tasks in the renewable energy sector is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lloyd, P. J. (2017). The role of energy in development. Journal of Energy in Southern Africa, 28(1), 54–62.

    Article  Google Scholar 

  2. Afridi, Y. S., Ahmad, K., & Hassan, L. (2021). Artificial intelligence based prognostic maintenance of renewable energy systems: A review of techniques, challenges, and future research directions. International Journal of Energy Research.

    Google Scholar 

  3. Global artificial intelligence (AI) in energy market. https://bisresearch.com/industry-report/artificial-intelligence-energy-market.html

  4. Ahmad, K., & Conci, N. (2019). How deep features have improved event recognition in multimedia: A survey. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 15(2), 1–27.

    Article  Google Scholar 

  5. Bianco, M. J., Gerstoft, P., Traer, J., Ozanich, E., Roch, M. A., Gannot, S., & Deledalle, C.-A. (2019). Machine learning in acoustics: Theory and applications. The Journal of the Acoustical Society of America, 146(5), 3590–3628.

    Article  Google Scholar 

  6. Kadhim, A. I. (2019). Survey on supervised machine learning techniques for automatic text classification. Artificial Intelligence Review, 52(1), 273–292.

    Article  MathSciNet  Google Scholar 

  7. Ahmad, K., Maabreh, M., Ghaly, M., Khan, K., Qadir, J., & Al-Fuqaha, A. (2022). Developing future human-centered smart cities: Critical analysis of smart city security, data management, and ethical challenges. Computer Science Review, 43, 100452.

    Article  Google Scholar 

  8. Lai, J.-P., Chang, Y.-M., Chen, C.-H., & Pai, P.-F. (2020). A survey of machine learning models in renewable energy predictions. Applied Sciences, 10(17), 5975.

    Article  Google Scholar 

  9. Gu, G. H., Noh, J., Kim, I., & Jung, Y. (2019). Machine learning for renewable energy materials. Journal of Materials Chemistry A, 7(29), 17096–17117.

    Article  Google Scholar 

  10. Daniel, C., Shukla, A. K., & Sharma, M. (2021). Applications of machine learning in harnessing of renewable energy. In Advances in clean energy technologies (pp. 177–187). Springer.

    Google Scholar 

  11. Salcedo-Sanz, S., Cornejo-Bueno, L., Prieto, L., Paredes, D., & Garcia-Herrera, R. (2018). Feature selection in machine learning prediction systems for renewable energy applications. Renewable and Sustainable Energy Reviews, 90, 728–741.

    Article  Google Scholar 

  12. Perera, A., & Kamalaruban, P. (2021). Applications of reinforcement learning in energy systems. Renewable and Sustainable Energy Reviews, 137, 110618.

    Article  Google Scholar 

  13. Meenal, R., Binu, D., Ramya, K., Michael, P. A., Vinoth Kumar, K., Rajasekaran, E., & Sangeetha, B. (2022). Weather forecasting for renewable energy system: A review. Archives of Computational Methods in Engineering, 29(5), 2875–2891.

    Article  MathSciNet  Google Scholar 

  14. Monteiro, C., Keko, H., Bessa, R., Miranda, V., Botterud, A., Wang, J., & Conzelmann, G. (2009). A quick guide to wind power forecasting: state-of-the-art 2009. Technical report, Argonne National Lab. (ANL), Argonne, IL (United States).

    Google Scholar 

  15. Katz, J. (2015). Grid integration studies: Data requirements, greening the grid. Technical report, National Renewable Energy Lab. (NREL), Golden, CO (United States).

    Google Scholar 

  16. Chernyakhovskiy, I., et al. (2016). Forecasting wind and solar generation: Improving system operations, greening the grid. Technical report, National Renewable Energy Lab. (NREL), Golden, CO (United States).

    Google Scholar 

  17. Sun, Y., Szűcs, G., & Brandt, A. R. (2018). Solar PV output prediction from video streams using convolutional neural networks. Energy & Environmental Science, 11(7), 1811–1818.

    Google Scholar 

  18. Yang, D. (2019). On post-processing day-ahead NWP forecasts using Kalman filtering. Solar Energy, 182, 179–181.

    Article  Google Scholar 

  19. Foley, A. M., Leahy, P. G., Marvuglia, A., & McKeogh, E. J. (2012). Current methods and advances in forecasting of wind power generation. Renewable Energy, 37(1), 1–8.

    Article  Google Scholar 

  20. Sadaei, H. J., e Silva, P. C. d. L., Guimarães, F. G., & Lee, M. H. (2019). Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series. Energy, 175, 365–377.

    Google Scholar 

  21. Ranaweera, D., Hubele, N., & Karady, G. (1996). Fuzzy logic for short term load forecasting. International Journal of Electrical Power & Energy Systems, 18(4), 215–222.

    Article  Google Scholar 

  22. Raza, M. Q., & Khosravi, A. (2015). A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renewable and Sustainable Energy Reviews, 50, 1352–1372.

    Article  Google Scholar 

  23. Velasco, L. C. P., Villezas, C. R., Palahang, P. N. C., & Dagaang, J. A. A. (2015). Next day electric load forecasting using artificial neural networks. In 2015 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1–6). IEEE.

    Google Scholar 

  24. Hernández, L., Baladrón, C., Aguiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., Pérez, F., Fernández, Á., & Lloret, J. (2014). Artificial neural network for short-term load forecasting in distribution systems. Energies, 7(3), 1576–1598.

    Article  Google Scholar 

  25. Buitrago, J., & Asfour, S. (2017). Short-term forecasting of electric loads using nonlinear autoregressive artificial neural networks with exogenous vector inputs. Energies, 10(1), 40.

    Article  Google Scholar 

  26. Rafi, S. H., et al. (2020). Highly efficient short term load forecasting scheme using long short term memory network. In 2020 8th International Electrical Engineering Congress (iEECON) (pp. 1–4). IEEE.

    Google Scholar 

  27. Atef, S., & Eltawil, A. B. (2020). Assessment of stacked unidirectional and bidirectional long short-term memory networks for electricity load forecasting. Electric Power Systems Research, 187, 106489.

    Article  Google Scholar 

  28. Yang, K., & Zhao, L. (2009). Application of Mamdani fuzzy system amendment on load forecasting model. In 2009 Symposium on Photonics and Optoelectronics (pp. 1–4). IEEE.

    Google Scholar 

  29. Zahid, M., Ahmed, F., Javaid, N., Abbasi, R. A., Zainab Kazmi, H. S., Javaid, A., Bilal, M., Akbar, M., & Ilahi, M. (2019). Electricity price and load forecasting using enhanced convolutional neural network and enhanced support vector regression in smart grids. Electronics, 8(2), 122.

    Article  Google Scholar 

  30. Baliyan, A., Gaurav, K., & Mishra, S. K. (2015). A review of short term load forecasting using artificial neural network models. Procedia Computer Science, 48, 121–125.

    Article  Google Scholar 

  31. Baltas, N. G., Mazidi, P., Ma, J., de Asis Fernandez, F., & Rodriguez, P. (2018). A comparative analysis of decision trees, support vector machines and artificial neural networks for on-line transient stability assessment. In 2018 International Conference on Smart Energy Systems and Technologies (SEST) (pp. 1–6). IEEE.

    Google Scholar 

  32. You, S., Zhao, Y., Mandich, M., Cui, Y., Li, H., Xiao, H., Fabus, S., Su, Y., Liu, Y., Yuan, H., et al. (2020). A review on artificial intelligence for grid stability assessment. In 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm) (pp. 1–6). IEEE.

    Google Scholar 

  33. Fazai, R., Abodayeh, K., Mansouri, M., Trabelsi, M., Nounou, H., Nounou, M., & Georghiou, G. E. (2019). Machine learning-based statistical testing hypothesis for fault detection in photovoltaic systems. Solar Energy, 190, 405–413.

    Article  Google Scholar 

  34. Niu, H., Omitaomu, O. A., & Cao, Q. C. (2020). Machine committee framework for power grid disturbances analysis using synchrophasors data. Smart Cities, 4(1), 1–16.

    Article  Google Scholar 

  35. Abdelgayed, T. S., Morsi, W. G., & Sidhu, T. S. (2017). Fault detection and classification based on co-training of semisupervised machine learning. IEEE Transactions on Industrial Electronics, 65(2), 1595–1605.

    Article  Google Scholar 

  36. Tufail, S., Parvez, I., Batool, S., & Sarwat, A. (2021). A survey on cybersecurity challenges, detection, and mitigation techniques for the smart grid. Energies, 14(18), 5894.

    Article  Google Scholar 

  37. Zhou, L., Ouyang, X., Ying, H., Han, L., Cheng, Y., & Zhang, T. (2018). Cyber-attack classification in smart grid via deep neural network. In Proceedings of the 2nd International Conference on Computer Science and Application Engineering (pp. 1–5).

    Google Scholar 

  38. Kosek, A. M. (2016). Contextual anomaly detection for cyber-physical security in smart grids based on an artificial neural network model. In 2016 Joint Workshop on Cyber-Physical Security and Resilience in Smart Grids (CPSR-SG) (pp. 1–6). IEEE.

    Google Scholar 

  39. Zhang, Y., & Yan, J. (2020). Semi-supervised domain-adversarial training for intrusion detection against false data injection in the smart grid. In 2020 International Joint Conference on Neural Networks (IJCNN) (pp. 1–7). IEEE.

    Google Scholar 

  40. Liu, Z., Zou, S., & Zhou, L. (2012). Condition monitoring system for hydro turbines based on LabVIEW. In 2012 Asia-Pacific Power and Energy Engineering Conference (pp. 1–4). IEEE.

    Google Scholar 

  41. Wang, S., Wang, K., & Li, Z. (2016). A review on data-driven predictive maintenance approach for hydro turbines/generators. In 6th International Workshop of Advanced Manufacturing and Automation (pp. 30–35). Atlantis Press.

    Google Scholar 

  42. Selak, L., Butala, P., & Sluga, A. (2014). Condition monitoring and fault diagnostics for hydropower plants. Computers in Industry, 65(6), 924–936.

    Article  Google Scholar 

  43. Zhang, C., Song, D., Chen, Y., Feng, X., Lumezanu, C., Cheng, W., Ni, J., Zong, B., Chen, H., & Chawla, N. V. (2019). A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, pp. 1409–1416).

    Google Scholar 

  44. Wang, D., Tsui, K.-L., & Miao, Q. (2017). Prognostics and health management: A review of vibration based bearing and gear health indicators. IEEE Access, 6, 665–676.

    Article  Google Scholar 

  45. Verma, A., Zappalá, D., Sheng, S., & Watson, S. J. (2022). Wind turbine gearbox fault prognosis using high-frequency SCADA data. In Journal of Physics: Conference Series (Vol. 2265, p. 032067). IOP Publishing.

    Google Scholar 

  46. Santos, P., Villa, L. F., Reñones, A., Bustillo, A., & Maudes, J. (2015). An SVM-based solution for fault detection in wind turbines. Sensors, 15(3), 5627–5648.

    Article  Google Scholar 

  47. Herp, J., Pedersen, N. L., & Nadimi, E. S. (2019). Assessment of early stopping through statistical health prognostic models for empirical RUL estimation in wind turbine main bearing failure monitoring. Energies, 13(1), 83.

    Article  Google Scholar 

  48. Riley, D., & Johnson, J. (2012). Photovoltaic prognostics and heath management using learning algorithms. In 2012 38th IEEE Photovoltaic Specialists Conference (pp. 001535–001539). IEEE.

    Google Scholar 

  49. Bandong, S., Leksono, E., Purwarianti, A., & Joelianto, E. (2019). Performance ratio estimation and prediction of solar power plants using machine learning to improve energy reliability. In 2019 6th International Conference on Instrumentation, Control, and Automation (ICA) (pp. 36–41). IEEE.

    Google Scholar 

  50. Correa-Jullian, C., Cardemil, J. M., Droguett, E. L., & Behzad, M. (2020). Assessment of deep learning techniques for prognosis of solar thermal systems. Renewable Energy, 145, 2178–2191.

    Article  Google Scholar 

  51. Dernoncourt, F., & Sander, E. (2011). Fuzzy logic: between human reasoning and artificial intelligence. Project Report Paris.

    Google Scholar 

  52. Abduljabbar, R., Dia, H., Liyanage, S., & Bagloee, S. A. (2019). Applications of artificial intelligence in transport: An overview. Sustainability, 11(1), 189.

    Article  Google Scholar 

  53. Suganthi, L., Iniyan, S., & Samuel, A. A. (2015). Applications of fuzzy logic in renewable energy systems—a review. Renewable and Sustainable Energy Reviews, 48, 585–607.

    Article  Google Scholar 

  54. Sivaneasan, B., Yu, C., & Goh, K. (2017). Solar forecasting using ANN with fuzzy logic pre-processing. Energy Procedia, 143, 727–732.

    Article  Google Scholar 

  55. Zaki, S. A., Zhu, H., & Yao, J. (2019). Fault detection and diagnosis of photovoltaic system using fuzzy logic control. In E3S Web of Conferences (Vol. 107, p. 02001). EDP Sciences.

    Google Scholar 

  56. Lau, H. C., Cheng, E., Lee, C. K., & Ho, G. T. (2008). A fuzzy logic approach to forecast energy consumption change in a manufacturing system. Expert Systems with Applications, 34(3), 1813–1824.

    Article  Google Scholar 

  57. Bajracharya, A., Khan, M. R. A., Michael, S., & Tonkoski, R. (2018). Forecasting data center load using hidden Markov model. In 2018 North American Power Symposium (NAPS) (pp. 1–5). IEEE.

    Google Scholar 

  58. Kouadri, A., Hajji, M., Harkat, M.-F., Abodayeh, K., Mansouri, M., Nounou, H., & Nounou, M. (2020). Hidden Markov model based principal component analysis for intelligent fault diagnosis of wind energy converter systems. Renewable Energy, 150, 598–606.

    Article  MATH  Google Scholar 

  59. Khan, T., Ahmad, K., Khan, J., Khan, I., & Ahmad, N. (2022). An explainable regression framework for predicting remaining useful life of machines. arXiv preprint arXiv:2204.13574.

    Google Scholar 

  60. Li, C., Tao, Y., Ao, W., Yang, S., & Bai, Y. (2018). Improving forecasting accuracy of daily enterprise electricity consumption using a random forest based on ensemble empirical mode decomposition. Energy, 165, 1220–1227.

    Article  Google Scholar 

  61. Yan, K., Li, W., Ji, Z., Qi, M., & Du, Y. (2019). A hybrid LSTM neural network for energy consumption forecasting of individual households. IEEE Access, 7, 157633–157642.

    Article  Google Scholar 

  62. Liu, B., Chen, J., Wang, H., & Wang, Q. (2020). Renewable energy and material supply risks: A predictive analysis based on an LSTM model. Frontiers in Energy Research, 8, 163.

    Article  Google Scholar 

  63. Gensler, A., Henze, J., Sick, B., & Raabe, N. (2016). Deep learning for solar power forecasting—an approach using autoencoder and LSTM neural networks. In 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 002858–002865). IEEE.

    Google Scholar 

  64. Aurangzeb, K., Alhussein, M., Javaid, K., & Haider, S. I. (2021). A pyramid-CNN based deep learning model for power load forecasting of similar-profile energy customers based on clustering. IEEE Access, 9, 14992–15003.

    Article  Google Scholar 

  65. Kumari, P., & Toshniwal, D. (2021). Long short term memory–convolutional neural network based deep hybrid approach for solar irradiance forecasting. Applied Energy, 295, 117061.

    Article  Google Scholar 

  66. Ku, Y.-J., Sapra, S., Baidya, S., & Dey, S. (2020). State of energy prediction in renewable energy-driven mobile edge computing using CNN-LSTM networks. In 2020 IEEE Green Energy and Smart Systems Conference (IGESSC) (pp. 1–7). IEEE.

    Google Scholar 

  67. Agga, A., Abbou, A., Labbadi, M., & El Houm, Y. (2021). Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models. Renewable Energy, 177, 101–112.

    Article  Google Scholar 

  68. Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A. S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., et al. (2022). Tackling climate change with machine learning. ACM Computing Surveys (CSUR), 55(2), 1–96.

    Article  Google Scholar 

  69. Hourly energy demand generation and weather. https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather

  70. Daily electricity price and demand data. https://www.kaggle.com/datasets/aramacus/electricity-demand-in-victoria-australia

  71. Half-hourly electricity demand for Victoria, Australia. https://tsibbledata.tidyverts.org/reference/vic_elec.html

  72. Miller, C., Kathirgamanathan, A., Picchetti, B., Arjunan, P., Park, J. Y., Nagy, Z., Raftery, P., Hobson, B. W., Shi, Z., & Meggers, F. (2020). The Building Data Genome Project 2, energy meter data from the ASHRAE great energy predictor III competition. Scientific Data, 7, 368.

    Article  Google Scholar 

  73. ISHAREA dataset. http://weather.whiteboxtechnologies.com/ISHRAE

  74. Hourly energy demand generation and weather dataset. https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather

  75. Household electric power consumption dataset. https://www.kaggle.com/datasets/uciml/electric-power-consumption-data-set

  76. Smard grid stability dataset. https://tinyurl.com/2t2ddhm8

  77. Arzamasov, V., Bohm, K., & Jochem, P. (2018). Towards concise models of grid stability. In 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm) (pp. 1–6). IEEE.

    Google Scholar 

  78. Pereira, L., Costa, D., & Ribeiro, M. (2022). A residential labeled dataset for smart meter data analytics. Scientific Data, 9(1), 1–11.

    Article  Google Scholar 

  79. Martin del Campo Barraza, S., Sandin, F., & Strömbergsson, D. (2018). Dataset concerning the vibration signals from wind turbines in northern Sweden.

    Google Scholar 

  80. Mammadov, E. E. O. (2019). Predictive maintenance of wind generators based on AI techniques. Master’s thesis, University of Waterloo.

    Google Scholar 

  81. Gearbox fault diagnosis: elaborated datasets. https://tinyurl.com/mbu5cv8w

  82. The EDP dataset. https://tinyurl.com/2nva3ta5

  83. GPVS-faults: Experimental data for fault scenarios in grid-connected PV systems under MPPT and IPPT modes. https://tinyurl.com/nw2aha8

  84. Al-Maliki, S., El Bouanani, F., Ahmad, K., Abdallah, M., Hoang, D., Niyato, D., & Al-Fuqaha, A. (2021). Opportunistic use of crowdsourced workers for online relabeling of potential adversarial examples.

    Book  Google Scholar 

  85. Kazmi, S. A. A., Hasan, S. F., & Shin, D.-R. (2015). Analyzing the integration of distributed generation into smart grids. In 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA) (pp. 762–766). IEEE.

    Google Scholar 

  86. Gunduz, M. Z., & Das, R. (2018). Analysis of cyber-attacks on smart grid applications. In 2018 International Conference on Artificial Intelligence and Data Processing (IDAP) (pp. 1–5). IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Saleem Afridi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Afridi, Y.S., Hassan, L., Ahmad, K. (2023). Machine Learning Applications for Renewable Energy Systems. In: Manshahia, M.S., Kharchenko, V., Weber, GW., Vasant, P. (eds) Advances in Artificial Intelligence for Renewable Energy Systems and Energy Autonomy. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-26496-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26496-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26495-5

  • Online ISBN: 978-3-031-26496-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics