Skip to main content

Artificial Intelligence Application to Flexibility Provision in Energy Management System: A Survey

  • Chapter
  • First Online:
Advances in Artificial Intelligence for Renewable Energy Systems and Energy Autonomy

Abstract

Due to the complicated load and supply balance dynamics, the massive amounts of renewable energy being introduced into the energy mix pose significant challenges for utilities and their customers. The renewable energy generators’ outputs are intermittent and thus create an imbalance between the instantaneous load demand and available supply at different instances of time. Besides, the inertia in power systems is becoming lesser due to the displacement of the rotating mass of conventional generators with inverter-based generators. Thus, the challenge of meeting the flexibility needs of modern power systems is becoming significantly high in recent times. Because of this, the traditional methods of meeting the flexibility needs of power systems are becoming insufficient; this calls for developing new intelligent approaches that can handle complex situations. Different concepts of artificial intelligence (AI) are deployed as a solution provider to numerous complex power systems operational problems, especially in resource forecasting, electricity market dynamics prediction, intelligent decision-making for generator scheduling, and more. Hence, this book chapter reviews existing flexibility management techniques and some crucial areas of AI deployment in energy management systems toward meeting the flexibility needs of modern energy supply systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gasser, P., Lustenberger, P., Cinelli, M., Kim, W., Spada, M., Burgherr, P., Hirschberg, S., Stojadinovic, B., & Sun, T. Y. (2021). A review on resilience assessment of energy systems. Sustainable and Resilient Infrastructure, 6(5), 273–299.

    Article  Google Scholar 

  2. Senshaw, D. A., & Kim, J. W. (2018). Meeting conditional targets in nationally determined contributions of developing countries: Renewable energy targets and required investment of GGGI member and partner countries. Energy Policy, 116, 433–443.

    Article  Google Scholar 

  3. Chlela, S., Selosse, S., & Maïzi, N. (2022). Pathways to decarbonization of European islands: Ensuring the integration of high renewable energy and power system flexibility. In IAEE energy forum (pp. 16–19).

    Google Scholar 

  4. Borland, J., & Tanaka, T. (2018). Overcoming barriers to 100% clean energy for Hawaii starts at the bottom of the energy food chain with residential island nano-grid and everyday lifestyle behavioral changes. In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC) (pp. 3829–3834).

    Google Scholar 

  5. Horowitz, R., Binsted, M., Browning, M., Fawcett, A., Henly, C., Hultman, N., McFarland, J., & McJeon, H. (2022). The energy system transformation needed to achieve the US long-term strategy. Joule, 6(7), 1357–1362.

    Article  Google Scholar 

  6. Hansen, K., Mathiesen, B. V., & Skov, I. R. (2019). Full energy system transition towards 100% renewable energy in Germany in 2050. Renewable and Sustainable Energy Reviews, 102, 1–13.

    Article  Google Scholar 

  7. Bramstoft, R., & Skytte, K. (2017). Decarbonizing Sweden’s energy and transportation system by 2050. International Journal of Sustainable Energy Planning and Management, 14, 3–20.

    Google Scholar 

  8. Kiptoo, M. K., Adewuyi, O. B., Lotfy, M. E., Amara, T., Konneh, K. V., & Senjyu, T. (2019). Assessing the techno-economic benefits of flexible demand resources scheduling for renewable energy–based smart microgrid planning. Future Internet, 11(10), 219.

    Article  Google Scholar 

  9. Mollenhauer, E., Christidis, A., & Tsatsaronis, G. (2018). Increasing the flexibility of combined heat and power plants with heat pumps and thermal energy storage. Journal of Energy Resources Technology, 140(2), 020907.

    Article  Google Scholar 

  10. Adewuyi, O. B., Lotfy, M. E., Akinloye, B. O., Howlader, H. O. R., Senjyu, T., & Narayanan, K. (2019). Security-constrained optimal utility-scale solar PV investment planning for weak grids: Short reviews and techno-economic analysis. Applied Energy, 245, 16–30.

    Article  Google Scholar 

  11. Sakah, M., Diawuo, F. A., Katzenbach, R., & Gyamfi, S. (2017). Towards a sustainable electrification in Ghana: A review of renewable energy deployment policies. Renewable and Sustainable Energy Reviews, 79, 544–557.

    Article  Google Scholar 

  12. Khoodaruth, A., Oree, V., Elahee, M., & Clark, W. W. (2017). Exploring options for a 100% renewable energy system in Mauritius by 2050. Utilities Policy, 44, 38–49.

    Article  Google Scholar 

  13. Aliyu, A. K., Modu, B., & Tan, C. W. (2018). A review of renewable energy development in Africa: A focus in south Africa, Egypt and Nigeria. Renewable and Sustainable Energy Reviews, 81, 2502–2518.

    Article  Google Scholar 

  14. Bolwig, S., Bazbauers, G., Klitkou, A., Lund, P. D., Blumberga, A., Gravelsins, A., & Blumberga, D. (2019). Review of modelling energy transitions pathways with application to energy system flexibility. Renewable and Sustainable Energy Reviews, 101, 440–452.

    Article  Google Scholar 

  15. Akpeji, K. O., Olasoji, A. O., Gaunt, C., Oyedokun, D. T., Awodele, K. O., & Folly, K. A. (2020). Economic impact of electricity supply interruptions in South Africa. SAIEE Africa Research Journal, 111(2), 73–87.

    Article  Google Scholar 

  16. Huang, Y. W., Kittner, N., & Kammen, D. M. (2019). ASEAN grid flexibility: Preparedness for grid integration of renewable energy. Energy Policy, 128, 711–726.

    Article  Google Scholar 

  17. Conteh, A., Lotfy, M. E., Adewuyi, O. B., Mandal, P., Takahashi, H., & Senjyu, T. (2020). Demand response economic assessment with the integration of renewable energy for developing electricity markets. Sustainability, 12(7), 2653.

    Article  Google Scholar 

  18. Ulbig, A., & Andersson, G. (2015). Analyzing operational flexibility of electric power systems. International Journal of Electrical Power & Energy Systems, 72, 155–164.

    Article  Google Scholar 

  19. Brouwer, A. S., van den Broek, M., Seebregts, A., & Faaij, A. (2015). Operational flexibility and economics of power plants in future low-carbon power systems. Applied Energy, 156, 107–128.

    Article  Google Scholar 

  20. Koltsaklis, N. E., Dagoumas, A. S., & Panapakidis, I. P. (2017). Impact of the penetration of renewables on flexibility needs. Energy Policy, 109, 360–369.

    Article  Google Scholar 

  21. Belderbos, A., & Delarue, E. (2015). Accounting for flexibility in power system planning with renewables. International Journal of Electrical Power & Energy Systems, 71, 33–41.

    Article  Google Scholar 

  22. Babatunde, O. M., Munda, J. L., & Hamam, Y. (2020). Power system flexibility: A review. Energy Reports, 6, 101–106.

    Article  Google Scholar 

  23. Papaefthymiou, G., & Dragoon, K. (2016). Towards 100% renewable energy systems: Uncapping power system flexibility. Energy Policy, 92, 69–82.

    Article  Google Scholar 

  24. Hussain, M., & Gao, Y. (2018). A review of demand response in an efficient smart grid environment. The Electricity Journal, 31(5), 55–63.

    Article  Google Scholar 

  25. Gong, H., & Wang, H. (2016). Day-ahead generation scheduling for variable energy resources considering demand response. In 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC) (pp. 2076–2080).

    Google Scholar 

  26. Ding, Y., Shao, C., Yan, J., Song, Y., Zhang, C., & Guo, C. (2018). Economical flexibility options for integrating fluctuating wind energy in power systems: The case of China. Applied Energy, 228, 426–436.

    Article  Google Scholar 

  27. Lund, P. D., Lindgren, J., Mikkola, J., & Salpakari, J. (2015). Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renewable and Sustainable Energy Reviews, 45, 785–807.

    Article  Google Scholar 

  28. Taibi, E., Nikolakakis, T., Gutierrez, L., Fernandez, C., Kiviluoma, J., Rissanen, S., & Lindroos, T. J. (2018). Power system flexibility for the energy transition: Part 1, overview for policy makers.

    Google Scholar 

  29. Ma, J., Silva, V., Belhomme, R., Kirschen, D. S., & Ochoa, L. F. (2013). Evaluating and planning flexibility in sustainable power systems. In 2013 IEEE power & energy society general meeting (pp. 1–11). IEEE.

    Google Scholar 

  30. Impram, S., Nese, S. V., & Oral, B. (2020). Challenges of renewable energy penetration on power system flexibility: A survey. Energy Strategy Reviews, 31, 100539.

    Article  Google Scholar 

  31. Zhou, B., Xu, D., Li, C., Chung, C. Y., Cao, Y., Chan, K. W., & Wu, Q. (2018). Optimal scheduling of biogas–solar–wind renewable portfolio for multicarrier energy supplies. IEEE Transactions on Power Systems, 33(6), 6229–6239.

    Article  Google Scholar 

  32. Notton, G., Nivet, M.-L., Voyant, C., Paoli, C., Darras, C., Motte, F., & Fouilloy, A. (2018). Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting. Renewable and Sustainable Energy Reviews, 87, 96–105.

    Article  Google Scholar 

  33. Gürtler, M., & Paulsen, T. (2018). The effect of wind and solar power forecasts on day-ahead and intraday electricity prices in Germany. Energy Economics, 75, 150–162.

    Article  Google Scholar 

  34. Martinez-Anido, C. B., Botor, B., Florita, A. R., Draxl, C., Lu, S., Hamann, H. F., & Hodge, B.-M. (2016). The value of day-ahead solar power forecasting improvement. Solar Energy, 129, 192–203.

    Article  Google Scholar 

  35. Wang, Q., Wu, H., Florita, A. R., Martinez-Anido, C. B., & Hodge, B.-M. (2016). The value of improved wind power forecasting: Grid flexibility quantification, ramp capability analysis, and impacts of electricity market operation timescales. Applied Energy, 184, 696–713.

    Article  Google Scholar 

  36. Xydas, E., Qadrdan, M., Marmaras, C., Cipcigan, L., Jenkins, N., & Ameli, H. (2017). Probabilistic wind power forecasting and its application in the scheduling of gas-fired generators. Applied Energy, 192, 382–394.

    Article  Google Scholar 

  37. Kostková, K., Omelina, L., Kyčina, P., & Jamrich, P. (2013). An introduction to load management. Electric Power Systems Research, 95, 184–191.

    Article  Google Scholar 

  38. Bellarmine, G. T. (2000). Load management techniques. In Proceedings of the IEEE SoutheastCon 2000. ’Preparing for The New Millennium’ (Cat. No. 00CH37105) (pp. 139–145). IEEE.

    Google Scholar 

  39. Zhang, Q., & Li, J. (2012). Demand response in electricity markets: A review. In 2012 9th International Conference on the European Energy Market (pp. 1–8). IEEE.

    Google Scholar 

  40. Jabir, H., Teh, J., Ishak, D., & Abunima, H. (2018). Impacts of demand-side management on electrical power systems: A review. Energies, 11(5), 1050.

    Article  Google Scholar 

  41. Niu, J., Tian, Z., Zhu, J., & Yue, L. (2020). Implementation of a price-driven demand response in a distributed energy system with multi-energy flexibility measures. Energy Conversion and Management, 208, 112575.

    Article  Google Scholar 

  42. Söder, L., Lund, P. D., Koduvere, H., Bolkesjø, T. F., Rossebø, G. H., Rosenlund-Soysal, E., Skytte, K., Katz, J., & Blumberga, D. (2018). A review of demand side flexibility potential in northern Europe. Renewable and Sustainable Energy Reviews, 91, 654–664.

    Article  Google Scholar 

  43. Pastore, L. M., Basso, G. L., Sforzini, M., & de Santoli, L. (2020). Heading towards 100% of renewable energy sources fraction: a critical overview on smart energy systems planning and flexibility measures. In E3S Web of Conferences (Vol. 197, p. 01003). EDP Sciences.

    Google Scholar 

  44. Chen, Y., Xu, P., Gu, J., Schmidt, F., & Li, W. (2018). Measures to improve energy demand flexibility in buildings for demand response (DR): A review. Energy and Buildings, 177, 125–139.

    Article  Google Scholar 

  45. Siano, P. (2014). Demand response and smart grids—a survey. Renewable and Sustainable Energy Reviews, 30, 461–478.

    Article  Google Scholar 

  46. Jin, M., Feng, W., Marnay, C., & Spanos, C. (2018). Microgrid to enable optimal distributed energy retail and end-user demand response. Applied Energy, 210, 1321–1335.

    Article  Google Scholar 

  47. Shigenobu, R., Adewuyi, O. B., Yona, A., & Senjyu, T. (2017). Demand response strategy management with active and reactive power incentive in the smart grid: A two-level optimization approach. AIMS Energy, 5, 482–505.

    Article  Google Scholar 

  48. Moghaddam, M. P., Abdollahi, A., & Rashidinejad, M. (2011). Flexible demand response programs modeling in competitive electricity markets. Applied Energy, 88(9), 3257–3269.

    Article  Google Scholar 

  49. Hussain, I., Mohsin, S., Basit, A., Khan, Z. A., Qasim, U., & Javaid, N. (2015). A review on demand response: Pricing, optimization, and appliance scheduling. Procedia Computer Science, 52, 843–850.

    Article  Google Scholar 

  50. Chauhan, A., Khan, M. T., Srivastava, A., Tripathi, A., Hussain, S. S., & Ustun, T. S. (2022). Techno-economic assessment and environmental analysis of an optimal hybrid system under novel demand response scheme for a remote region of India. Energy Reports, 8, 284–291.

    Article  Google Scholar 

  51. Neupane, B., Pedersen, T. B., & Thiesson, B. (2018, June). Utilizing device-level demand forecasting for flexibility markets. In Proceedings of the Ninth International Conference on Future Energy Systems (pp. 108–118).

    Google Scholar 

  52. Ferreira, P., Almeida, D., Diońsio, A., Bouri, E., & Quintino, D. (2022). Energy markets—Who are the influencers?. Energy, 239, 121962.

    Article  Google Scholar 

  53. González-Aparicio, I. and Zucker, A. (2015). Impact of wind power uncertainty forecasting on the market integration of wind energy in Spain. Applied Energy, 159, 334–349.

    Article  Google Scholar 

  54. Amrollahi, M. H., & Bathaee, S. M. T. (2017). Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response. Applied Energy, 202, 66–77.

    Article  Google Scholar 

  55. Naderipour, A., Ramtin, A. R., Abdullah, A., Marzbali, M. H., Nowdeh, S. A., & Kamyab, H. (2022). Hybrid energy system optimization with battery storage for remote area application considering loss of energy probability and economic analysis. Energy, 239, 122303.

    Article  Google Scholar 

  56. Das, B. K., Hassan, R., Islam, M. S., & Rezaei, M. (2022). Influence of energy management strategies and storage devices on the techno-enviro-economic optimization of hybrid energy systems: A case study in Western Australia. Journal of Energy Storage, 51, 104239.

    Article  Google Scholar 

  57. Wang, Y., Zhang, Y., Xue, L., Liu, C., Song, F., Sun, Y., Liu, Y., & Che, B. (2022). Research on planning optimization of integrated energy system based on the differential features of hybrid energy storage system. Journal of Energy Storage, 55, 105368.

    Article  Google Scholar 

  58. Taibi, E., Nikolakakis, T., Gutierrez, L., Fernandez, C., Kiviluoma, J., Rissanen, S., & Lindroos, T. J. (2018). Power system flexibility for the energy transition: Part 2, IRENA FlexTool methodology.

    Google Scholar 

  59. Stinner, S., Huchtemann, K., & Müller, D. (2016). Quantifying the operational flexibility of building energy systems with thermal energy storages. Applied Energy, 181, 140–154.

    Article  Google Scholar 

  60. Ralon, P., Taylor, M., Ilas, A., Diaz-Bone, H., & Kairies, K. (2017). Electricity storage and renewables: Costs and markets to 2030. In International renewable energy agency. Abu Dhabi.

    Google Scholar 

  61. Khiareddine, A., Salah, C. B., Rekioua, D., & Mimouni, M. F. (2018). Sizing methodology for hybrid photovoltaic /wind/ hydrogen/battery integrated to energy management strategy for pumping system. Energy, 153, 743–762.

    Article  Google Scholar 

  62. Awan, A. B., Zubair, M., Sidhu, G. A. S., Bhatti, A. R., & Abo-Khalil, A. G. (2019). Performance analysis of various hybrid renewable energy systems using battery, hydrogen, and pumped hydro-based storage units. International Journal of Energy Research, 43(12), 6296–6321.

    Article  Google Scholar 

  63. Zhang, W., Maleki, A., Rosen, M. A., & Liu, J. (2018). Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage. Energy, 163, 191–207.

    Article  Google Scholar 

  64. Huang, Y., Keatley, P., Chen, H., Zhang, X., Rolfe, A., & Hewitt, N. (2018). Techno-economic study of compressed air energy storage systems for the grid integration of wind power. International Journal of Energy Research, 42(2), 559–569.

    Article  Google Scholar 

  65. Li, X., & Palazzolo, A. (2022). A review of flywheel energy storage systems: state of the art and opportunities. Journal of Energy Storage, 46, 103576.

    Article  Google Scholar 

  66. Bahramara, S. (2021). Robust optimization of the flexibility-constrained energy management problem for a smart home with rooftop photovoltaic and an energy storage. Journal of Energy Storage, 36, 102358.

    Article  Google Scholar 

  67. Loisel, R. (2012). Power system flexibility with electricity storage technologies: A technical–economic assessment of a large-scale storage facility. International Journal of Electrical Power & Energy Systems, 42(1), 542–552.

    Article  Google Scholar 

  68. Yang, J., Zhang, L., Han, X., & Wang, M. (2016). Evaluation of operational flexibility for power system with energy storage. In 2016 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE) (pp. 187–191).

    Google Scholar 

  69. Li, Y., Wang, J., Han, Y., Zhao, Q., Fang, X., & Cao, Z. (2020). Robust and opportunistic scheduling of district integrated natural gas and power system with high wind power penetration considering demand flexibility and compressed air energy storage. Journal of Cleaner Production, 256, 120456.

    Article  Google Scholar 

  70. Nuytten, T., Claessens, B., Paredis, K., Van Bael, J., & Six, D. (2013). Flexibility of a combined heat and power system with thermal energy storage for district heating. Applied Energy, 104, 583–591.

    Article  Google Scholar 

  71. Li, N., Uckun, C., Constantinescu, E. M., Birge, J. R., Hedman, K. W., & Botterud, A. (2015). Flexible operation of batteries in power system scheduling with renewable energy. IEEE Transactions on Sustainable Energy, 7(2), 685–696.

    Article  Google Scholar 

  72. Seward, W., Qadrdan, M., & Jenkins, N. (2022). Quantifying the value of distributed battery storage to the operation of a low carbon power system. Applied Energy, 305, 117684.

    Article  Google Scholar 

  73. Efremov, C., Leu, V., & Sanduleac, M. (2021). Increasing system flexibility through a combination of pumped-hydro and battery-storage systems. An overview of possible developments. In 2021 International Conference on Electromechanical and Energy Systems (SIELMEN) (pp. 237–242). IEEE.

    Google Scholar 

  74. Teng, Y., Wang, Z., Li, Y., Ma, Q., Hui, Q., & Li, S. (2019). Multi-energy storage system model based on electricity heat and hydrogen coordinated optimization for power grid flexibility. CSEE Journal of Power and Energy Systems, 5(2), 266–274.

    Google Scholar 

  75. Garcia-Torres, F., Bordons, C., Tobajas, J., Real-Calvo, R., Santiago, I., & Grieu, S. (2021). Stochastic optimization of microgrids with hybrid energy storage systems for grid flexibility services considering energy forecast uncertainties. IEEE Transactions on Power Systems, 36(6), 5537–5547.

    Article  Google Scholar 

  76. He, H., Du, E., Zhang, N., Kang, C., & Wang, X. (2021). Enhancing the power grid flexibility with battery energy storage transportation and transmission switching. Applied Energy, 290, 116692.

    Article  Google Scholar 

  77. Mohler, D., & Sowder, D. (2017). Energy storage and the need for flexibility on the grid. In Renewable energy integration (pp. 309–316). Elsevier.

    Google Scholar 

  78. Denholm, P., & Hand, M. (2011). Grid flexibility and storage required to achieve very high penetration of variable renewable electricity. Energy Policy, 39(3), 1817–1830.

    Article  Google Scholar 

  79. Divya, K., & Østergaard, J. (2009). Battery energy storage technology for power systems—an overview. Electric Power Systems Research, 79(4), 511–520.

    Article  Google Scholar 

  80. Gago, R. G., Pinto, S. F., & Silva, J. F. (2016). G2V and V2G electric vehicle charger for smart grids. In 2016 IEEE International Smart Cities Conference (ISC2) (pp. 1–6).

    Google Scholar 

  81. Zhang, B., & Kezunovic, M. (2015). Impact on power system flexibility by electric vehicle participation in ramp market. IEEE Transactions on Smart Grid, 7(3), 1285–1294.

    Article  Google Scholar 

  82. Salvatti, G. A., Carati, E. G., Cardoso, R., da Costa, J. P., & Stein, C. M. D. O. (2020). Electric vehicles energy management with V2G/G2V multifactor optimization of smart grids. Energies, 13(5), 1191.

    Article  Google Scholar 

  83. Han, S., & Acquah, M. A. (2021). Grid-to-vehicle (G2V) and vehicle-to-grid (V2G) technologies. MDPI.

    Google Scholar 

  84. Nikoobakht, A., Aghaei, J., Niknam, T., Farahmand, H., & Korpås, M. (2019). Electric vehicle mobility and optimal grid reconfiguration as flexibility tools in wind integrated power systems. International Journal of Electrical Power & Energy Systems, 110, 83–94.

    Article  Google Scholar 

  85. Borba, B. S. M., Szklo, A., & Schaeffer, R. (2012). Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil. Energy, 37(1), 469–481.

    Article  Google Scholar 

  86. Wen, C.-K., Chen, J.-C., Teng, J.-H., & Ting, P. (2012). Decentralized plug-in electric vehicle charging selection algorithm in power systems. IEEE Transactions on Smart Grid, 3(4), 1779–1789.

    Article  Google Scholar 

  87. Šare, A., Krajačić, G., Pukšec, T., & Duić, N. (2015). The integration of renewable energy sources and electric vehicles into the power system of the Dubrovnik region. Energy, Sustainability and Society, 5(1), 1–16.

    Article  Google Scholar 

  88. Wang, B., Zhao, D., Dehghanian, P., Tian, Y., & Hong, T. (2020). Aggregated electric vehicle load modeling in large-scale electric power systems. IEEE Transactions on Industry Applications, 56(5), 5796–5810.

    Article  Google Scholar 

  89. Backe, S., Korpås, M., & Tomasgard, A. (2021). Heat and electric vehicle flexibility in the European power system: A case study of Norwegian energy communities. International Journal of Electrical Power & Energy Systems, 125, 106479.

    Article  Google Scholar 

  90. Cañigueral, M. and Meléndez, J. (2021). Flexibility management of electric vehicles based on user profiles: The Arnhem case study. International Journal of Electrical Power & Energy Systems, 133, 107195.

    Article  Google Scholar 

  91. Zhang, P., Qian, K., Zhou, C., Stewart, B. G., & Hepburn, D. M. (2012). A methodology for optimization of power systems demand due to electric vehicle charging load. IEEE Transactions on Power Systems, 27(3), 1628–1636.

    Article  Google Scholar 

  92. Yang, Z., Li, K., & Foley, A. (2015). Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review. Renewable and Sustainable Energy Reviews, 51, 396–416.

    Article  Google Scholar 

  93. Heggarty, T., Bourmaud, J.-Y., Girard, R., & Kariniotakis, G. (2020). Quantifying power system flexibility provision. Applied Energy, 279, 115852.

    Article  Google Scholar 

  94. You, L., Ma, H., Saha, T. K., & Liu, G. (2022). Security-constrained economic dispatch exploiting the operational flexibility of transmission networks. International Journal of Electrical Power & Energy Systems, 138, 107914.

    Article  Google Scholar 

  95. Moeller, C., Kotthaus, K., Zdrallek, M., & Schweiger, F. (2021). Comparison of incentive models for grid-supporting flexibility usage of private charging infrastructure. In ETG congress 2021 (pp. 1–6). VDE.

    Google Scholar 

  96. Kazemi-Razi, S. M., Abyaneh, H. A., Nafisi, H., Ali, Z., & Marzband, M. (2021). Enhancement of flexibility in multi-energy microgrids considering voltage and congestion improvement: Robust thermal comfort against reserve calls. Sustainable Cities and Society, 74, 103160.

    Article  Google Scholar 

  97. Billinton, R., & Wangdee, W. (2007). Reliability-based transmission reinforcement planning associated with large-scale wind farms. IEEE Transactions on Power Systems, 22(1), 34–41.

    Article  Google Scholar 

  98. Brown, T., Schlachtberger, D., Kies, A., Schramm, S., & Greiner, M. (2018). Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system. Energy, 160, 720–739.

    Article  Google Scholar 

  99. Conejo, A. J., & Baringo, L. (2018). Unit commitment and economic dispatch. In Power system operations (pp. 197–232). Springer.

    Google Scholar 

  100. Shahbazitabar, M., & Abdi, H. (2018). A novel priority-based stochastic unit commitment considering renewable energy sources and parking lot cooperation. Energy, 161, 308–324.

    Article  Google Scholar 

  101. Nosair, H., & Bouffard, F. (2017). Economic dispatch under uncertainty: The probabilistic envelopes approach. IEEE Transactions on Power Systems, 32(3), 1701–1710.

    Article  Google Scholar 

  102. Kornrumpf, T., Meese, J., Zdrallek, M., Neusel-Lange, N., & Roch, M. (2016). Economic dispatch of flexibility options for grid services on distribution level. In 2016 Power Systems Computation Conference (PSCC) (pp. 1–7). IEEE.

    Google Scholar 

  103. Thatte, A. A., & Xie, L. (2016). A metric and market construct of inter-temporal flexibility in time-coupled economic dispatch. IEEE Transactions on Power Systems, 31(5), 3437–3446.

    Article  Google Scholar 

  104. Chondrogiannis, S., Poncela-Blanco, M., Marinopoulos, A., Marneris, I., Ntomaris, A., Biskas, P., & Bakirtzis, A. (2021). Chapter 8—power system flexibility: A methodological analytical framework based on unit commitment and economic dispatch modelling. In A. Dagoumas (Ed.), Mathematical modelling of contemporary electricity markets (pp. 127–156). Academic Press.

    Google Scholar 

  105. Papaemmanouil, A., Andersson, G., Bertling, L., Johnsson, F., et al. (2010). A cost-benefit analysis of transmission network reinforcement driven by generation capacity expansion. In IEEE PES general meeting (pp. 1–8). IEEE.

    Google Scholar 

  106. Li, Z., Cheng, Z., Li, S., Si, J., Gao, J., Dong, W., & Das, H. S. (2021). Virtual synchronous generator and SMC based cascaded control for voltage-source grid-supporting inverters. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(3), 2722–2736.

    Article  Google Scholar 

  107. Unruh, P., Nuschke, M., Strauß, P., & Welck, F. (2020). Overview on grid-forming inverter control methods. Energies, 13(10), 2589.

    Article  Google Scholar 

  108. Gabriels, G. H., Windapo, M. O., Oyedokun, D. T., & Ruggeri, S. (2020). Proposed framework for integration of optimal current injection and multi-agent control of the LV distribution network. In 2020 6th IEEE International Energy Conference (ENERGYCon) (pp. 521–526). IEEE.

    Google Scholar 

  109. Dai, W., Yang, Z., Yu, J., Cui, W., Li, W., Li, J., & Liu, H. (2021). Economic dispatch of interconnected networks considering hidden flexibility. Energy, 223, 120054.

    Article  Google Scholar 

  110. Leite, W. L., Svinicki, M., & Shi, Y. (2010). Attempted validation of the scores of the VARK: Learning styles inventory with multitrait–multimethod confirmatory factor analysis models. Educational and Psychological Measurement, 70(2), 323–339.

    Article  Google Scholar 

  111. Rameshkumar, G., & Samundeswari, S. (2014). Neural network, artificial neural network (ANN) and biological neural network (BNN) in soft computing. Volume, 30(3), 3.

    Google Scholar 

  112. Levy, S. (1992). Artificial life: The quest for a new creation. Random House Inc.

    Google Scholar 

  113. Mohammed, M., Khan, M. B., & Bashier, E. B. M. (2016). Machine learning: Algorithms and applications. CRC Press.

    Book  Google Scholar 

  114. Balas, V. E., Roy, S. S., Sharma, D., & Samui, P. (2019). Handbook of deep learning applications (Vol. 136). Springer.

    Google Scholar 

  115. Ongsulee, P. (2017). Artificial intelligence, machine learning and deep learning. In 2017 15th International Conference on ICT and Knowledge Engineering (ICT&KE) (pp. 1–6). IEEE.

    Google Scholar 

  116. Ingre, B., & Yadav, A. (2015). Performance analysis of NSL-KDD dataset using ANN. In 2015 International Conference on Signal Processing and Communication Engineering Systems (pp. 92–96). IEEE.

    Google Scholar 

  117. Sze, V., Chen, Y.-H., Yang, T.-J., & Emer, J. S. (2017). Efficient processing of deep neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12), 2295–2329.

    Article  Google Scholar 

  118. Shinde, P. P., & Shah, S. (2018). A review of machine learning and deep learning applications. In 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA) (pp. 1–6). IEEE.

    Google Scholar 

  119. Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685–695.

    Article  Google Scholar 

  120. Alassery, F., Alzahrani, A., Khan, A., Irshad, K., & Kshirsagar, S. R. (2022). An artificial intelligence-based solar radiation prophesy model for green energy utilization in energy management system. Sustainable Energy Technologies and Assessments, 52, 102060.

    Article  Google Scholar 

  121. Ahmad, T., Chen, H., & Shah, W. A. (2019). Effective bulk energy consumption control and management for power utilities using artificial intelligence techniques under conventional and renewable energy resources. International Journal of Electrical Power & Energy Systems, 109, 242–258.

    Article  Google Scholar 

  122. Reynolds, J., Ahmad, M. W., Rezgui, Y., & Hippolyte, J.-L. (2019). Operational supply and demand optimisation of a multi-vector district energy system using artificial neural networks and a genetic algorithm. Applied Energy, 235, 699–713.

    Article  Google Scholar 

  123. Finck, C., Li, R., & Zeiler, W. (2019). Economic model predictive control for demand flexibility of a residential building. Energy, 176, 365–379.

    Article  Google Scholar 

  124. Xu, Y., Ahokangas, P., Louis, J.-N., & Pongrácz, E. (2019). Electricity market empowered by artificial intelligence: A platform approach. Energies, 12(21), 4128.

    Article  Google Scholar 

  125. Lu, R., Hong, S. H., & Yu, M. (2019). Demand response for home energy management using reinforcement learning and artificial neural network. IEEE Transactions on Smart Grid, 10(6), 6629–6639.

    Article  Google Scholar 

  126. Ponoćko, J., & Milanović, J. V. (2018). Forecasting demand flexibility of aggregated residential load using smart meter data. IEEE Transactions on Power Systems, 33(5), 5446–5455.

    Article  Google Scholar 

  127. Zhou, Y., & Zheng, S. (2020). Machine-learning based hybrid demand-side controller for high-rise office buildings with high energy flexibilities. Applied Energy, 262, 114416.

    Article  Google Scholar 

  128. Ye, Y., Qiu, D., Wu, X., Strbac, G., & Ward, J. (2020). Model-free real-time autonomous control for a residential multi-energy system using deep reinforcement learning. IEEE Transactions on Smart Grid, 11(4), 3068–3082.

    Article  Google Scholar 

  129. Wang, H., Yi, H., Peng, J., Wang, G., Liu, Y., Jiang, H., & Liu, W. (2017). Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network. Energy Conversion and Management, 153, 409–422.

    Article  Google Scholar 

  130. Kumar, K. R., & Kalavathi, M. S. (2018). Artificial intelligence based forecast models for predicting solar power generation. Materials Today: Proceedings, 5(1), 796–802.

    Google Scholar 

  131. Zang, H., Cheng, L., Ding, T., Cheung, K. W., Wei, Z., & Sun, G. (2020). Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning. International Journal of Electrical Power & Energy Systems, 118, 105790.

    Article  Google Scholar 

  132. Jung, Y., Jung, J., Kim, B., & Han, S. (2020). Long short-term memory recurrent neural network for modeling temporal patterns in long-term power forecasting for solar PV facilities: Case study of South Korea. Journal of Cleaner Production, 250, 119476.

    Article  Google Scholar 

  133. Ahmadiahangar, R., Häring, T., Rosin, A., Korõtko, T., & Martins, J. (2019). Residential load forecasting for flexibility prediction using machine learning-based regression model. In 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1–4). IEEE.

    Google Scholar 

  134. Khan, P. W., Byun, Y.-C., Lee, S.-J., Kang, D.-H., Kang, J.-Y., & Park, H.-S. (2020). Machine learning-based approach to predict energy consumption of renewable and nonrenewable power sources. Energies, 13(18), 4870.

    Article  Google Scholar 

  135. Rocha, H. R., Honorato, I. H., Fiorotti, R., Celeste, W. C., Silvestre, L. J., & Silva, J. A. (2021). An artificial intelligence based scheduling algorithm for demand-side energy management in smart homes. Applied Energy, 282, 116145.

    Article  Google Scholar 

  136. Lan, T., Jermsittiparsert, K., T Alrashood, S., Rezaei, M., Al-Ghussain, L., & A Mohamed, M. (2021). An advanced machine learning based energy management of renewable microgrids considering hybrid electric vehicles’ charging demand. Energies, 14(3), 569.

    Google Scholar 

  137. Shivam, K., Tzou, J.-C., & Wu, S.-C. (2021). A multi-objective predictive energy management strategy for residential grid-connected PV-battery hybrid systems based on machine learning technique. Energy Conversion and Management, 237, 114103.

    Article  Google Scholar 

  138. Yousaf, A., Asif, R. M., Shakir, M., Rehman, A. U., Alassery, F., Hamam, H., & Cheikhrouhou, O. (2021). A novel machine learning-based price forecasting for energy management systems. Sustainability, 13(22), 12693.

    Article  Google Scholar 

  139. Yang, W., Sun, S., Hao, Y., & Wang, S. (2022). A novel machine learning-based electricity price forecasting model based on optimal model selection strategy. Energy, 238, 121989.

    Article  Google Scholar 

  140. Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), 1–21.

    Article  Google Scholar 

  141. Boulemtafes, A., Derhab, A., & Challal, Y. (2020). A review of privacy-preserving techniques for deep learning. Neurocomputing, 384, 21–45.

    Article  Google Scholar 

  142. Monti, A., & Ponci, F. (2015). Electric power systems. In E. Kyriakides & M. Polycarpou (Eds.), Intelligent monitoring, control, and security of critical infrastructure systems (1st ed.). Springer.

    Google Scholar 

  143. Adewuyi, O. B., Danish, M. S. S., Howlader, A. M., Senjyu, T., Lotfy, M. E., et al. (2018). Network structure-based critical bus identification for power system considering line voltage stability margin. Journal of Power and Energy Engineering, 6(9), 97.

    Article  Google Scholar 

  144. Wu, Y.-K. (2007). A novel algorithm for ATC calculations and applications in deregulated electricity markets. International Journal of Electrical Power and Energy Systems, 29(10), 810–821.

    Article  Google Scholar 

  145. Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2(3), 1–21.

    Article  MathSciNet  Google Scholar 

  146. Bae, H., Jang, J., Jung, D., Jang, H., Ha, H., Lee, H., & Yoon, S. (2018). Security and privacy issues in deep learning. arXiv preprint arXiv:1807.11655.

    Google Scholar 

  147. Kiptoo, M. K., Lotfy, M. E., Adewuyi, O. B., Conteh, A., Howlader, A. M., & Senjyu, T. (2020). Integrated approach for optimal techno-economic planning for high renewable energy-based isolated microgrid considering cost of energy storage and demand response strategies. Energy Conversion and Management, 215, 112917.

    Article  Google Scholar 

  148. Soto, E. A., Bosman, L. B., Wollega, E., & Leon-Salas, W. D. (2021). Peer-to-peer energy trading: A review of the literature. Applied Energy, 283, 116268.

    Article  Google Scholar 

  149. Park, C., & Yong, T. (2017). Comparative review and discussion on P2P electricity trading. Energy Procedia, 128, 3–9.

    Article  Google Scholar 

  150. Jogunola, O., Ikpehai, A., Anoh, K., Adebisi, B., Hammoudeh, M., Son, S.-Y., & Harris, G. (2017). State-of-the-art and prospects for peer-to-peer transaction-based energy system. Energies, 10(12), 2106.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oludamilare Bode Adewuyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adewuyi, O.B., Folly, K.A., Oyedokun, D.T.O., Sun, Y. (2023). Artificial Intelligence Application to Flexibility Provision in Energy Management System: A Survey. In: Manshahia, M.S., Kharchenko, V., Weber, GW., Vasant, P. (eds) Advances in Artificial Intelligence for Renewable Energy Systems and Energy Autonomy. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-26496-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26496-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26495-5

  • Online ISBN: 978-3-031-26496-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics