Skip to main content

Abstract

The variable speed wind energy conversion system (WECS) produces variable output power that cannot be directly supplied to the load. It needs a suitable controller to match the amplitude and frequency of the output voltage with the load. This paper proposes a radial basis function neural network (RBFNN)-based controller as a maximum power point tracker (MPPT) to extract maximum power available from wind. MATLAB-/Simulink-based simulations have given better results in comparison with FLC and MLFFNN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaied, E. A. H. (2022). Comparative analysis of MPPT techniques for enhancing a wind energy conversion system.

    Google Scholar 

  2. GWEC-Global-Wind-Report. (2022).

    Google Scholar 

  3. El Aissaoui, H., El Ougli, A., & Tidhaf, B. (2021). Neural networks and fuzzy logic based maximum power point tracking control for wind energy conversion system. Advances in Science, Technology and Engineering Systems, 6, 586–592.

    Article  Google Scholar 

  4. Sitharthan, R., Karthikeyan, M., Sundar, D. S., & Rajasekarana, S. (2020). Adaptive hybrid intelligent MPPT controller to approximate effectual wind speed and optimal rotor speed of variable speed wind turbine. ISA Transactions, 96, 479–489.

    Article  Google Scholar 

  5. Huang, C.-H. (2014). Modified neural network for dynamic control and operation of a hybrid generation systems. Journal of Applied Research and Technology, 12, 1154.

    Article  Google Scholar 

  6. Kumar, R., Agrawal, H. P., Shah, A., & Bansal, H. O. (2019). Maximum power point tracking in wind energy conversion system using radial basis function based neural network control strategy. Sustainable Energy Technologies and Assessments, 36, 100533.

    Article  Google Scholar 

  7. El Hajjaji, A., & Khamlichi, A. (2017). Analysis of a RBF neural network based controller for pitch angle of variable-speed wind turbines. Procedia Engineering, 181, 552–559.

    Article  Google Scholar 

  8. Assareh, E., & Biglari, M. (2015). A novel approach to capture the maximum power from variable speed wind turbines using PI controller, RBF neural network and GSA evolutionary algorithm. Renewable and Sustainable Energy Reviews, 51, 1023–1037.

    Article  Google Scholar 

  9. Ramasamy, S. (2017). Single stage energy conversion through an RBFN controller based boost type Vienna rectifier in the wind turbine system. Gazi University Journal of Science, 30(4), 253–266.

    Google Scholar 

  10. Ndirangu, J. G., Nderu, J. N., Maina, C. M., & Muhia, A. M. (2016). Power output maximization of a PMSG based standalone wind energy conversion system using fuzzy logic. IOSR Journal of Electrical and Electronics Engineering, 11(1), 58–66.

    Google Scholar 

  11. Khaing, T. Z., & Kyin, L. Z. (2015). Control scheme of stand-alone power supply system with battery energy storage system. International Journal of Electrical, Electronics and Data Communication, 3(6), 19–25.

    Google Scholar 

  12. Hussein, M., Senjyu, T., Orabi, M., Wahab, M., & Hamada, M. (2013). Control of a stand-alone variable speed wind energy supply system. Applied Sciences Open Access, 3(2), 437–456.

    Google Scholar 

  13. Poultangari, I., Shahnazi, R., & Sheikhan, M. (2012). RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm. ISA Transactions, 51(5), 641–648.

    Article  Google Scholar 

  14. Hayati. (2013). Application of radial basis function network for the modeling and simulation of turbogenerator. Journal of Advances in Information Technology, 4(2), 76–79.

    Article  Google Scholar 

  15. Tiwari, R., & Rameshbabu, N. (2017). Comparative analysis of pitch angle controller strategies for PMSG based wind energy conversion system. I.J. Intelligent Systems and Applications, 5, 62–73.

    Article  Google Scholar 

  16. Hong, C.-M., Chen, C.-H., & Tu, C.-S. (2013). Maximum power point tracking-based control algorithm for PMSG wind generation system without mechanical sensors. Energy Conversion and Management, 69, 58–67.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dinku, T.M., Manshahia, M.S. (2023). RBFNN for MPPT Controller in Wind Energy Harvesting System. In: Manshahia, M.S., Kharchenko, V., Weber, GW., Vasant, P. (eds) Advances in Artificial Intelligence for Renewable Energy Systems and Energy Autonomy. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-26496-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26496-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26495-5

  • Online ISBN: 978-3-031-26496-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics