Skip to main content

Consistent and Tractable Algorithm for Markov Network Learning

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

Markov network (MN) structured output classifiers provide a transparent and powerful way to model dependencies between output labels. The MN classifiers can be learned using the M3N algorithm, which, however, is not statistically consistent and requires expensive fully annotated examples. We propose an algorithm to learn MN classifiers that is based on Fisher-consistent adversarial loss minimization. Learning is transformed into a tractable convex optimization that is amenable to standard gradient methods. We also extend the algorithm to learn from examples with missing labels. We show that the extended algorithm remains convex, tractable, and statistically consistent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We refer to the expectation of a loss \(\textrm{LOSS}\) as the \(\textrm{LOSS}\)-risk.

  2. 2.

    To emphasize that \({\psi ^p_\textrm{lp}}\) is applicable only for the linear MN classifier, we use the notation \({\psi ^p_\textrm{lp}}(x,\boldsymbol{\theta },\boldsymbol{a})\) instead of \({\psi ^p_\textrm{lp}}(\boldsymbol{f},\boldsymbol{a})\) with \(\boldsymbol{f}(x)=\boldsymbol{\varPhi }(x)^T\boldsymbol{\theta }\).

References

  1. Antoniuk, K., Franc, V., Hlaváč, V.: Consistency of structured output learning with missing labels. In: Asian Conference on Machine Learning (ACML) (2015)

    Google Scholar 

  2. Fathony, R., Liu, A., Asif, K., Ziebart, B.: Adversarial multiclass classification: A risk minimization perspective. In: NIPS (2016)

    Google Scholar 

  3. Fathony, R., et al.: Consistent robust adversarial prediction for general multiclass classification (2018). https://arxiv.org/abs/1812.07526

  4. Franc, V., Laskov, P.: Learning maximal margin Markov networks via tractable convex optimization. Control Syst. Comput. 2, 25–34 (2011)

    Google Scholar 

  5. Franc, V., Savchynskyy, B.: Discriminative learning of max-sum classifiers. J. Mach. Learn. Res. 9(1), 67–104 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Franc, V., Yermakov, A.: Learning maximum margin Markov networks from examples with missing labels. In: Asian Conference on Machine Learning (2021)

    Google Scholar 

  7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  8. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). http://yann.lecun.com/exdb/mnist/

  9. Lin, Y.: A note on margin-based loss functions in classification. Stat. Probab. Lett. 68(1), 73–82 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, Y.: Fisher consistency of multicategory support vector machines. In: International Conference on Artificial Intelligence and Statistics, pp. 291–298 (2007)

    Google Scholar 

  11. Lou, X., Hamprecht, F.A.: Structured learning from partial annotations. In: International Conference on Machine Learning (ICML), pp. 1519–1526 (2012)

    Google Scholar 

  12. Nowak, A., Bach, F., Rudi, A.: Consistent structured prediction with max-min margin Markov networks. In: International Conference on Machine Learning (2020)

    Google Scholar 

  13. Schlesinger, M.: Syntactic analysis of two-dimensional visual signals in noisy conditions. Kibernetika 4, 113–130 (1976). in Russian

    Google Scholar 

  14. Taskar, B., Chatalbashev, V., Koller, D.: Learning associative Markov networks. In: International Conference on Machine Learning (ICML) (2004)

    Google Scholar 

  15. Taskar, B., Guestrin, C., Koller, D.: Maximum-margin markov networks. In: Proceedings of Neural Information Processing Systems (NIPS) (2004)

    Google Scholar 

  16. Taskar, B., Guestrin, C., Koller, D.: Max-margin Markov networks. In: NIPS (2003)

    Google Scholar 

  17. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res. 6(50), 1453–1484 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Wang, P., Donti, P., Wilder, B., Kolter, J.: SATnet: bridging deep learning and logical reasoning using a differential satisfiability solver. In: ICML (2019)

    Google Scholar 

  19. Werner, T.: A linear programming approach to max-sum problem: a review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1165–1179 (2007)

    Google Scholar 

  20. Yhang, T.: Statistical analysis of some multi-category large margin classification methods. J. Mach. Learn. Res. 5 (2004)

    Google Scholar 

Download references

Acknowledgments

The research was supported by the Czech Science Foundation project GACR GA19-21198S and OP VVV project CZ.02.1.01\(\backslash \)0.0\(\backslash \)0.0\(\backslash \)16 019\(\backslash \)0000765 Research Center for Informatics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vojtech Franc .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 210 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Franc, V., Prusa, D., Yermakov, A. (2023). Consistent and Tractable Algorithm for Markov Network Learning. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13716. Springer, Cham. https://doi.org/10.1007/978-3-031-26412-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26412-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26411-5

  • Online ISBN: 978-3-031-26412-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics