Skip to main content

Anomaly Detection via Few-Shot Learning on Normality

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13713))

Abstract

One of the basic ideas for anomaly detection is to describe an enclosing boundary of normal data in order to identify cases outside as anomalies. In practice, however, normal data can consist of multiple classes, in which case the anomalies may appear not only outside such an enclosure but also in-between ‘normal’ classes. This paper addresses deep anomaly detection aimed at embedding ‘normal’ classes to individually close but mutually distant proximities. We introduce a problem setting where a limited number of labeled examples from each ‘normal’ class is available for training. Preparing such examples is much more feasible in practice than collecting examples of anomalies or labeling large-scale, normal data. We utilize the labeled examples in a margin-based loss reflecting the inter-class and the intra-class distances among the embedded labeled data. The two terms and their relations are derived from an information-theoretic principle. In an empirical study using image benchmark datasets, we show the advantage of the proposed method over existing deep anomaly detection models. We also show case studies using low-dimensional mappings to analyze the behavior of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A sample code of the PDD is provided in https://github.com/ProtoDD/pdd.

  2. 2.

    https://github.com/houssamzenati/Efficient-GAN-Anomaly-Detection.

  3. 3.

    https://github.com/samet-akcay/ganomaly.

  4. 4.

    https://github.com/donalee/DeepMCDD.

References

  1. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39

    Chapter  Google Scholar 

  2. Alemi, A.A., Fischer, I., Dillon, J.V., Murphy, K.: Deep variational information bottleneck. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings. OpenReview.net (2017)

    Google Scholar 

  3. Ando, S.: Deep representation learning with an information-theoretic loss. CoRR abs/2111.12950 (2021)

    Google Scholar 

  4. Ding, R., Guo, G., Yang, X., Chen, B., Liu, Z., He, X.: BiGAN: collaborative filtering with bidirectional generative adversarial networks. In: Proceedings of the 2020 SIAM International Conference on Data Mining, SDM 2020, pp. 82–90. SIAM (2020)

    Google Scholar 

  5. Ghafoori, Z., Leckie, C.: Deep multi-sphere support vector data description. In: Proceedings of the 2020 SIAM International Conference on Data Mining, SDM 2020, pp. 109–117. SIAM (2020)

    Google Scholar 

  6. Goodfellow, I.J., et al.: Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. NIPS’14, vol. 2, pp. 2672–2680. MIT Press, Cambridge (2014)

    Google Scholar 

  7. Jeong, T., Kim, H.: OOD-MAML: meta-learning for few-shot out-of-distribution detection and classification. In: Advances in Neural Information Processing Systems, vol. 33, pp. 3907–3916. Curran Associates, Inc. (2020)

    Google Scholar 

  8. Kwon, D., Kim, H., Kim, J., Suh, S.C., Kim, I., Kim, K.J.: A survey of deep learning-based network anomaly detection. Clust. Comput. (2017)

    Google Scholar 

  9. Lee, D., Yu, S., Yu, H.: Multi-class data description for out-of-distribution detection. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’20, pp. 1362–1370. Association for Computing Machinery, New York (2020)

    Google Scholar 

  10. McInnes, L., Healy, J., Saul, N., Großberger, L.: UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3(29), 861 (2018)

    Google Scholar 

  11. Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. ACM Comput. Surv. 54(2) (Mar 2021)

    Google Scholar 

  12. Ruff, L., et al.: Deep one-class classification. In: Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 4393–4402. PMLR (2018)

    Google Scholar 

  13. Ruff, L., et al.: Deep semi-supervised anomaly detection. In: 8th International Conference on Learning Representations, ICLR 2020. OpenReview.net (2020)

    Google Scholar 

  14. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  15. Tax, D.M.J., Duin, R.P.W.: Support vector data description. Mach. Learn. 54, 45–66 (2004)

    Google Scholar 

  16. Tishby, N., Zaslavsky, N.: Deep learning and the information bottleneck principle. In: 2015 IEEE Information Theory Workshop (ITW), pp. 1–5 (2015)

    Google Scholar 

  17. Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. Comput. Res. Repos. (CoRR) physics/0004057 (2000)

    Google Scholar 

  18. Zenati, H., Romain, M., Foo, C., Lecouat, B., Chandrasekhar, V.: Adversarially learned anomaly detection. In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 727–736 (2018)

    Google Scholar 

  19. Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R.: Efficient GAN-based anomaly detection. CoRR abs/1802.06222 (2018),

    Google Scholar 

  20. Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R.: Efficient GAN-based anomaly detection (2019)

    Google Scholar 

  21. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  22. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms, August 2017

    Google Scholar 

  23. Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s thesis (2009)

    Google Scholar 

  24. Liu, B., Kang, H., Li, H., Hua, G., Vasconcelos, N.: Few-shot open-set recognition using meta-learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  25. Jeong, M., Choi, S., Kim, C.: Few-shot open-set recognition by transformation consistency. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 12566–12575, June 2021

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Ando .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 2. Summary of training parameters
Table 3. GAN architecture (MNIST/Fashion-MNIST)
Table 4. GAN architecture (CIFAR-10)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ando, S., Yamamoto, A. (2023). Anomaly Detection via Few-Shot Learning on Normality. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13713. Springer, Cham. https://doi.org/10.1007/978-3-031-26387-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26387-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26386-6

  • Online ISBN: 978-3-031-26387-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics