Skip to main content

Optimal Pursuit of Surveilling Agents Near a High Value Target

  • Conference paper
  • First Online:
Decision and Game Theory for Security (GameSec 2022)

Abstract

We introduce a tracking evasion game comprising a single mobile pursuer, two mobile trackers and one static high value target. The trackers rely on individual measurements of the location of the target using, for instance, their individual distance to the target and are assumed to be slower than the pursuer. The pursuer seeks to minimize the square of the instantaneous distance to one of the trackers, while the trackers aim to jointly maximize a weighted combination of the determinant of the Fisher Information Matrix and the square of the distance between the pursuer and the tracker being pursued. This formulation models the objective of the trackers which is to maximize the information gathered about the target, while delaying capture. We show that the optimization problem for the trackers can be transformed into a Quadratically Constrained Quadratic Program. We then establish that the game admits a Nash equilibrium in the space of pure strategies and provide several numerical insights into the trajectories and the payoff of the mobile agents. Finally, we outline how this work can be generalized to the case of multiple trackers and multiple targets.

This work was supported by NSF Award ECCS-2030556.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AlDahak, A., Elnagar, A.: A practical pursuit-evasion algorithm: detection and tracking. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 343–348. IEEE (2007)

    Google Scholar 

  2. Bajaj, S., Torng, E., Bopardikar, S.D.: Competitive perimeter defense on a line. In: 2021 American Control Conference (ACC), pp. 3196–3201. IEEE (2021)

    Google Scholar 

  3. Bhattacharya, S., Başar, T., Falcone, M.: Surveillance for security as a pursuit-evasion game. In: Poovendran, R., Saad, W. (eds.) GameSec 2014. LNCS, vol. 8840, pp. 370–379. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12601-2_23

    Chapter  MATH  Google Scholar 

  4. Bishop, A.N., Fidan, B., Anderson, B.D., Doğançay, K., Pathirana, P.N.: Optimality analysis of sensor-target localization geometries. Automatica 46(3), 479–492 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blais, F.: Review of 20 years of range sensor development. J. Electron. Imaging 13(1), 231–243 (2004)

    Article  Google Scholar 

  6. Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  7. Chang, C.B., Tabaczynski, J.: Application of state estimation to target tracking. IEEE Trans. Autom. Control 29(2), 98–109 (1984)

    Article  MATH  Google Scholar 

  8. Chung, T.H., Burdick, J.W., Murray, R.M.: A decentralized motion coordination strategy for dynamic target tracking. In: Proceedings 2006 IEEE International Conference on Robotics and Automation 2006, ICRA 2006, pp. 2416–2422. IEEE (2006)

    Google Scholar 

  9. Coleman, D., Bopardikar, S.D., Tan, X.: Observability-aware target tracking with range only measurement. In: 2021 American Control Conference (ACC), pp. 4217–4224. IEEE (2021)

    Google Scholar 

  10. English, J.T., Wilhelm, J.P.: Defender-aware attacking guidance policy for the target-attacker-defender differential game. J. Aerosp. Inf. Syst. 18(6), 366–376 (2021)

    Google Scholar 

  11. Garcia, E., Casbeer, D.W., Pachter, M.: Active target defence differential game: fast defender case. IET Control Theory Appl. 11(17), 2985–2993 (2017)

    Article  MathSciNet  Google Scholar 

  12. Garcia, E., Casbeer, D.W., Pachter, M.: Optimal target capture strategies in the target-attacker-defender differential game. In: 2018 Annual American Control Conference (ACC), pp. 68–73. IEEE (2018)

    Google Scholar 

  13. Hespanha, J.P.: Noncooperative Game Theory: An Introduction for Engineers and Computer Scientists. Princeton University Press, Princeton (2017)

    Book  MATH  Google Scholar 

  14. Hung, N.T., Rego, F.F., Pascoal, A.M.: Cooperative distributed estimation and control of multiple autonomous vehicles for range-based underwater target localization and pursuit. IEEE Trans. Control Syst. Technol. 30(4), 1433–1447 (2022)

    Article  Google Scholar 

  15. Madani, R., Fazelnia, G., Lavaei, J.: Rank-2 matrix solution for semidefinite relaxations of arbitrary polynomial optimization problems. Constraints 21, 25 (2014)

    Google Scholar 

  16. Martínez, S., Bullo, F.: Optimal sensor placement and motion coordination for target tracking. Automatica 42(4), 661–668 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Miller, A., Miller, B.: Underwater target tracking using bearing-only measurements. J. Commun. Technol. Electron. 63(6), 643–649 (2018). https://doi.org/10.1134/S1064226918060207

    Article  Google Scholar 

  18. Murrieta-Cid, R., Ruiz, U., Marroquin, J.L., Laumond, J.P., Hutchinson, S.: Tracking an omnidirectional evader with a differential drive robot. Auton. Robots 31(4), 345–366 (2011). https://doi.org/10.1007/s10514-011-9246-z

    Article  Google Scholar 

  19. Polastre, J.: Design and implementation of wireless sensor networks for habitat monitoring. Ph.D. thesis, Citeseer (2003)

    Google Scholar 

  20. Ponda, S., Kolacinski, R., Frazzoli, E.: Trajectory optimization for target localization using small unmanned aerial vehicles. In: AIAA Guidance, Navigation, and Control Conference, p. 6015 (2009)

    Google Scholar 

  21. Quenzer, J.D., Morgansen, K.A.: Observability based control in range-only underwater vehicle localization. In: 2014 American Control Conference, pp. 4702–4707. IEEE (2014)

    Google Scholar 

  22. Rafieisakhaei, M., Chakravorty, S., Kumar, P.R.: On the use of the observability gramian for partially observed robotic path planning problems. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 1523–1528 (2017). https://doi.org/10.1109/CDC.2017.8263868

  23. Solodov, A., Williams, A., Al Hanaei, S., Goddard, B.: Analyzing the threat of unmanned aerial vehicles (UAV) to nuclear facilities. Secur. J. 31(1), 305–324 (2018). https://doi.org/10.1057/s41284-017-0102-5

    Article  Google Scholar 

  24. Spletzer, J.R., Taylor, C.J.: Dynamic sensor planning and control for optimally tracking targets. Int. J. Robot. Res. 22(1), 7–20 (2003)

    Article  Google Scholar 

  25. Tolić, D., Fierro, R.: Adaptive sampling for tracking in pursuit-evasion games. In: 2011 IEEE International Symposium on Intelligent Control, pp. 179–184. IEEE (2011)

    Google Scholar 

  26. Tsoukalas, A., Xing, D., Evangeliou, N., Giakoumidis, N., Tzes, A.: Deep learning assisted visual tracking of evader-UAV. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 252–257. IEEE (2021)

    Google Scholar 

  27. Von Moll, A., Shishika, D., Fuchs, Z., Dorothy, M.: The turret-runner-penetrator differential game. In: 2021 American Control Conference (ACC), pp. 3202–3209. IEEE (2021)

    Google Scholar 

  28. Yang, C., Kaplan, L., Blasch, E.: Performance measures of covariance and information matrices in resource management for target state estimation. IEEE Trans. Aerosp. Electron. Syst. 48(3), 2594–2613 (2012)

    Article  Google Scholar 

  29. Zhang, J., Zhuang, J.: Modeling a multi-target attacker-defender game with multiple attack types. Reliab. Eng. Syst. Saf. 185, 465–475 (2019)

    Article  Google Scholar 

  30. Zhou, K., Roumeliotis, S.I.: Optimal motion strategies for range-only constrained multisensor target tracking. IEEE Trans. Robot. 24(5), 1168–1185 (2008)

    Article  Google Scholar 

  31. Zhou, K., Roumeliotis, S.I.: Multirobot active target tracking with combinations of relative observations. IEEE Trans. Robot. 27(4), 678–695 (2011)

    Article  Google Scholar 

  32. Zou, R., Bhattacharya, S.: On optimal pursuit trajectories for visibility-based target-tracking game. IEEE Trans. Robot. 35(2), 449–465 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Xiaobo Tan at Michigan State University for his valuable comments and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivam Bajaj .

Editor information

Editors and Affiliations

7 Appendix

7 Appendix

In this section, we provide the expression for the matrices \(P,Q_j,M\) and L, respectively. For ease of notation, denote \(a_i = \hat{X}_i^t\), \(b_i = \hat{Y}_i^t\). Further, let \({\textbf {I}}_{n\times p}\) (resp. \({\textbf {0}}_{n\times p}\)) denote the identity (resp. zero) matrix of dimension \(n\times p\). Then,

$$\begin{aligned} P =\frac{1}{\sigma _{\nu }^2}\times \begin{bmatrix} {\textbf {0}}_{6\times 6} &{}~ {\textbf {0}}_{6\times 1} &{}~ {\textbf {0}}_{6\times 1} &{}~ {\textbf {0}}_{6\times 8} &{}~ {\textbf {0}}_{6\times 1}\\ {\textbf {0}}_{1\times 6} &{}~ \delta \sigma _{\nu }^2 &{}~ -\delta \sigma _{\nu }^2 &{}~ {\textbf {0}}_{1\times 8} &{}~ 0\\ {\textbf {0}}_{1\times 6} &{}~ -\delta \sigma _{\nu }^2 &{}~ \delta \sigma _{\nu }^2 &{}~ {\textbf {0}}_{1\times 8} &{}~ 0\\ {\textbf {0}}_{8\times 6} &{}~ {\textbf {0}}_{8\times 1} &{}~ {\textbf {0}}_{8\times 1} &{}~ {\textbf {0}}_{8\times 8} &{}~ {\textbf {0}}_{8\times 1}\\ {\textbf {0}}_{1\times 6} &{}~ 0 &{}~ 0 &{}~ {\textbf {0}}_{1\times 8} &{}~ 1 \end{bmatrix}, F = \begin{bmatrix} F_1 &{}~ {\textbf {0}}_{8\times 9}\\ {\textbf {0}}_{9\times 8} &{}~ F_2 \end{bmatrix}, \end{aligned}$$

where \(F_1=\)

$$\begin{aligned} \small \begin{bmatrix} b_2^2 &{} -a_2b_2 &{} -b_1b_2 &{} 2a_1b_2-a_2b_1 &{} -b_2 &{} b_2 &{} 0 &{} a_2b_1b_2-a_1b_2^2\\ -a_2b_2 &{} a_2^2 &{} 2a_2b_1-a_1b_2 &{} -a_1a_2 &{} a_2 &{} -a_2 &{} 0 &{} a_1a_2b_2-b_1a_2^2\\ -b_1b_2 &{} 2a_2b_1-a_1b_2 &{} b_1^2 &{} -a_1b_1 &{} b_1 &{} -b_1 &{} 0 &{} a_1b_1b_2-a_2b_1^2\\ 2a_1b_2-a_2b_1 &{} -a_1a_2 &{} -a_1b_1 &{} a_1^2 &{} -a_1 &{} a_1 &{} 0 &{} a_1a_2b_1-b_2a_1^2\\ -b_2 &{} a_2 &{} b_1 &{} -a_1 &{} 1 &{} -1 &{} 0 &{} 0\\ b_2 &{} -a_2 &{} -b_1 &{} a_1 &{} -1 &{} 1 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ a_2b_1b_2-a_1b_2^2 &{} a_1a_2b_2-b_1a_2^2 &{} a_1b_1b_2-a_2b_1^2 &{} a_1a_2b_1-b_2a_1^2 &{} 0 &{} 0 &{} 0 &{} (a_1b_2-a_2b_1)^2 \end{bmatrix} \end{aligned}$$

and \(F_2=\)

$$\begin{aligned} \small \begin{bmatrix} -(a_2^2+b_2^2) &{} 0 &{} -2a_1a_2 &{} -2a_1b_2 &{} b_2 &{} 0 &{} a_2 &{} 0 &{} a_1(a_2^2+b_2^2)\\ 0 &{} -(a_2^2+b_2^2) &{} -2a_2b_1 &{} -2b_1b_2 &{} 0 &{} a_2 &{} 0 &{} b_2 &{} b_1(a_2^2+b_2^2)\\ -2a_1a_2 &{} -2 a_2b_1 &{} -(a_1^2+b_1^2) &{} 0 &{} 0 &{} b_1 &{} a_1 &{} 0 &{} a_2(a_1^2+b_1^2)\\ -2a_1b_2 &{} -2b_1b_2 &{} 0 &{} -(a_1^2+b_1^2) &{} a_1 &{} 0 &{} 0 &{}b_1 &{} b_2(a_1^2+b_1^2)\\ b_2 &{} 0 &{} 0 &{} a_1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} a_2 &{} b_1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0\\ a_2 &{} 0 &{} a_1 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0\\ 0 &{} b_2 &{} 0 &{} b_1 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0\\ a_1(a_2^2+b_2^2) &{} b_1(a_2^2+b_2^2) &{} a_2(a_1^2+b_1^2) &{} b_2(a_1^2+b_1^2) &{} 0 &{} 0 &{} 0 &{} 0 &{} -(a_1^2+b_1^2)(a_2^2+b_2^2) \end{bmatrix}. \end{aligned}$$

Moreover,

$$\begin{aligned} Q_1 = \begin{bmatrix} {\textbf {I}}_{2\times 2} &{}~ {\textbf {0}}_{2\times 6} &{}~ {\textbf {0}}_{2\times 9}\\ {\textbf {0}}_{5\times 4} &{}~ {\textbf {0}}_{5\times 4} &{}~ {\textbf {0}}_{5\times 9}\\ {\textbf {0}}_{1\times 7} &{}~ -\mu _1^2 &{}~ {\textbf {0}}_{1\times 9}\\ {\textbf {0}}_{9\times 4} &{}~ {\textbf {0}}_{9\times 4} &{}~ {\textbf {0}}_{9\times 9} \end{bmatrix}, Q_2 = \begin{bmatrix} {\textbf {0}}_{2\times 2} &{}~ {\textbf {0}}_{2\times 2} &{}~ {\textbf {0}}_{2\times 4} &{}~ {\textbf {0}}_{2\times 9}\\ {\textbf {0}}_{2\times 2} &{}~ {\textbf {I}}_{2\times 2} &{}~ {\textbf {0}}_{2\times 4} &{}~ {\textbf {0}}_{2\times 9}\\ {\textbf {0}}_{3\times 2} &{}~ {\textbf {0}}_{3\times 2} &{}~ {\textbf {0}}_{3\times 4} &{}~ {\textbf {0}}_{3\times 9}\\ {\textbf {0}}_{1\times 2} &{}~ {\textbf {0}}_{1\times 5} &{}~ -\mu _2^2 &{}~ {\textbf {0}}_{1\times 9}\\ {\textbf {0}}_{9\times 2} &{}~ {\textbf {0}}_{9\times 5} &{}~ {\textbf {0}}_{9\times 1} &{}~ {\textbf {0}}_{9\times 9} \end{bmatrix}, \end{aligned}$$
$$\begin{aligned} M_1 = \begin{bmatrix} {\textbf {I}}_{2\times 2} &{} {\textbf {0}}_{2\times 5} &{} [e_1^t-p^t] &{} {\textbf {0}}_{2\times 9}\\ {\textbf {0}}_{4\times 2} &{} {\textbf {0}}_{4\times 4} &{} {\textbf {0}}_{4\times 2} &{} {\textbf {0}}_{4\times 9}\\ {\textbf {0}}_{1\times 6} &{} -1 &{} 0 &{} {\textbf {0}}_{1\times 9}\\ [e_1^t-p^t]' &{} {\textbf {0}}_{1\times 5} &{} \Vert {e_1^t-p^t}\Vert ^2 &{} {\textbf {0}}_{1\times 9}\\ {\textbf {0}}_{9\times 2} &{} {\textbf {0}}_{9\times 2} &{} {\textbf {0}}_{9\times 2} &{} {\textbf {0}}_{9\times 11} \end{bmatrix},\\ M_0 = \begin{bmatrix} {\textbf {0}}_{2\times 2} &{} {\textbf {0}}_{2\times 2} &{} {\textbf {0}}_{2\times 2} &{} {\textbf {0}}_{2\times 2} &{} {\textbf {0}}_{2\times 9}\\ {\textbf {0}}_{2\times 2} &{} {\textbf {I}}_{2\times 2} &{} {\textbf {0}}_{2\times 3} &{} [e_2^t-p^t] &{} {\textbf {0}}_{2\times 9}\\ {\textbf {0}}_{2\times 2} &{} {\textbf {0}}_{2\times 2} &{} {\textbf {0}}_{2\times 2} &{} {\textbf {0}}_{2\times 2} &{} {\textbf {0}}_{2\times 9}\\ {\textbf {0}}_{1\times 2} &{} {\textbf {0}}_{1\times 4} &{} -1 &{} 0 &{} {\textbf {0}}_{1\times 9}\\ {\textbf {0}}_{1\times 2} &{} [e_2^t-p^t]' &{} {\textbf {0}}_{1\times 3} &{} \Vert {e_2^t-p^t}\Vert ^2 &{} {\textbf {0}}_{1\times 9}\\ {\textbf {0}}_{9\times 2} &{} {\textbf {0}}_{9\times 2} &{} {\textbf {0}}_{9\times 2} &{} {\textbf {0}}_{9\times 2} &{} {\textbf {0}}_{9\times 9} \end{bmatrix}. \end{aligned}$$

We now define the matrices \(L_g \in \mathbb {R}^{17\times 17}, \forall g \in \{1,\dots ,10\}\). Let \(L_g(k,l)\) denote an element at the \(k^{th}\) row and the \(l^{th}\) column of the matrix \(L_g, g\in \{1,\dots ,10\}\). Then,

$$\begin{aligned} L_1(k,l) = {\left\{ \begin{array}{ll} 0.5, \text { if } k=1, l=4,\\ 0.5, \text { if } k=4, l=1,\\ -0.5, \text { if } k=5, l=8,\\ -0.5, \text { if } k=8, l=5,\\ 0 \text { otherwise} \end{array}\right. }, L_2(k,l) = {\left\{ \begin{array}{ll} 0.5, \text { if } k=2, l=3,\\ 0.5, \text { if } k=3, l=2,\\ -0.5, \text { if } k=6, l=8,\\ -0.5, \text { if } k=8, l=6,\\ 0 \text { otherwise} \end{array}\right. }, \end{aligned}$$
$$\begin{aligned} L_3(k,l) = {\left\{ \begin{array}{ll} 0.5, \text { if } k=1, l=17,\\ 0.5, \text { if } k=17, l=1,\\ -0.5, \text { if } k=9, l=8,\\ -0.5, \text { if } k=8, l=9,\\ 0 \text { otherwise} \end{array}\right. }, L_4(k,l) = {\left\{ \begin{array}{ll} 0.5, \text { if } k=2, l=17,\\ 0.5, \text { if } k=17, l=2,\\ -0.5, \text { if } k=10, l=8,\\ -0.5, \text { if } k=8, l=10,\\ 0 \text { otherwise} \end{array}\right. }, \end{aligned}$$
$$\begin{aligned} L_5(k,l) = {\left\{ \begin{array}{ll} 0.5, \text { if } k=3, l=17,\\ 0.5, \text { if } k=17, l=3,\\ -0.5, \text { if } k=11, l=8,\\ -0.5, \text { if } k=8, l=11,\\ 0 \text { otherwise} \end{array}\right. }, L_6(k,l) = {\left\{ \begin{array}{ll} 0.5, \text { if } k=4, l=17,\\ 0.5, \text { if } k=17, l=4,\\ -0.5, \text { if } k=12, l=8,\\ -0.5, \text { if } k=8, l=12,\\ 0 \text { otherwise} \end{array}\right. }, \end{aligned}$$
$$\begin{aligned} L_7(k,l) = {\left\{ \begin{array}{ll} 0.5, \text { if } k=5, l=17,\\ 0.5, \text { if } k=17, l=5,\\ -0.5, \text { if } k=13, l=8,\\ -0.5, \text { if } k=8, l=13,\\ 0 \text { otherwise} \end{array}\right. }, L_8(k,l) = {\left\{ \begin{array}{ll} 0.5, \text { if } k=6, l=17,\\ 0.5, \text { if } k=17, l=6,\\ -0.5, \text { if } k=14, l=8,\\ -0.5, \text { if } k=8, l=14,\\ 0 \text { otherwise} \end{array}\right. }, \end{aligned}$$
$$\begin{aligned} L_9(k,l) = {\left\{ \begin{array}{ll} 0.5, \text { if } k=3, l=9,\\ 0.5, \text { if } k=9, l=3,\\ -0.5, \text { if } k=15, l=8,\\ -0.5, \text { if } k=8, l=15,\\ 0 \text { otherwise} \end{array}\right. }, L_{10}(k,l) = {\left\{ \begin{array}{ll} 0.5, \text { if } k=4, l=10,\\ 0.5, \text { if } k=10, l=4,\\ -0.5, \text { if } k=16, l=8,\\ -0.5, \text { if } k=8, l=16,\\ 0 \text { otherwise} \end{array}\right. }, \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bajaj, S., Bopardikar, S.D. (2023). Optimal Pursuit of Surveilling Agents Near a High Value Target. In: Fang, F., Xu, H., Hayel, Y. (eds) Decision and Game Theory for Security. GameSec 2022. Lecture Notes in Computer Science, vol 13727. Springer, Cham. https://doi.org/10.1007/978-3-031-26369-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26369-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26368-2

  • Online ISBN: 978-3-031-26369-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics