Skip to main content

Einführung

  • Chapter
  • First Online:
Quantenkommunikationsnetze

Zusammenfassung

Die Telekommunikation hat sich von einem „Store-and-Forward“-Paradigma zu einem „Compute-and-Forward“-Paradigma entwickelt. Dieser Wandel (der die Datenverarbeitung zum Kernstück der Kommunikation macht) ist dank der Virtualisierung und Softwarisierung der Netze möglich geworden. Allerdings stoßen alte, und künftige Kommunikationsnetze, die auf der klassischen Physik basieren, an Grenzen, die nicht überschritten werden können. Solche Limitationen werden vor allem die Leistung der Sicherheit, die Latenzzeit und die Kommunikationseffizienz betreffen. Die einzige Möglichkeit, über diese Grenzen hinauszugehen, ist ein Paradigmenwechsel, bei dem die Telekommunikation die Quantenmechanik nutzt. Durch die Nutzung quantenmechanischer Eigenschaften der Natur können künftige Kommunikationsnetze unerwartete Leistungen auf effiziente Weise erzielen. Die Klärung dieses Zusammenhangs und die Gründe für den Einsatz der Quantenmechanik in der Telekommunikation sind das zentrale Thema dieses einführenden Kapitels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Abdou, A., van Oorschot, P. C., & Wan, T. (2018). Comparative analysis of control plane security of SDN and conventional networks. IEEE Communications Surveys Tutorials, 20(4), 3542–3559.

    Article  Google Scholar 

  2. Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys Tutorials, 18(3), 1617–1655.

    Article  Google Scholar 

  3. Ahmad, I., Namal, S., Ylianttila, M., & Gurtov, A. (2015). Security in software defined networks: A survey. IEEE Communications Surveys Tutorials, 17(4), 2317–2346.

    Article  Google Scholar 

  4. Bassoli, R., Granelli, F., Arzo, S. T., & Di Renzo, M. (2019). Toward 5G cloud radio access network: An energy and latency perspective. Transactions on Emerging Telecommunications Technologies, e3669.

    Google Scholar 

  5. Bennett, C. H., & Brassard, G. (1984). An update on quantum cryptography. In Workshop on the Theory and Application of Cryptographic Techniques (S. 475–480).

    Google Scholar 

  6. Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., & Wootters, W. K. (1993). Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 70(13), 1895.

    Article  MathSciNet  MATH  Google Scholar 

  7. Buhrman, H., Cleve, R., Massar, S., & de Wolf, R. (2010). Nonlocality and communication complexity. Reviews of Modern Physics, 82(1), 665–698.

    Article  Google Scholar 

  8. Buzzi, S., Chih-Lin, I., Klein, T. E., Poor, H. V., Yang, C., & Zappone, A. (2016). A survey of energy-efficient techniques for 5G networks and challenges ahead. IEEE Journal on Selected Areas in Communications, 34(4), 697–709.

    Article  Google Scholar 

  9. Cai, N., Winter, A., & Yeung, R. W. (2004). Quantum privacy and quantum wiretap channels. Problems of Information Transmission, 40(4), 318–336.

    Article  MathSciNet  MATH  Google Scholar 

  10. Dargahi, T., Caponi, A., Ambrosin, M., Bianchi, G., & Conti, M. (2017). A survey on the security of stateful SDN data planes. IEEE Communications Surveys Tutorials, 19(3), 1701–1725.

    Article  Google Scholar 

  11. Dayarathna, M., Wen, Y., & Fan, R. (2016). Data center energy consumption modeling: A survey. IEEE Communications Surveys Tutorials, 18(1), 732–794.

    Article  Google Scholar 

  12. Devetak, I. (2005). The private classical capacity and quantum capacity of a quantum channel. IEEE Transactions on Information Theory, 51(1), 44–55.

    Article  MathSciNet  MATH  Google Scholar 

  13. Devetak, I., & Shor, P. W. (2005). The capacity of a quantum channel for simultaneous transmission of classical and quantum information. Communications in Mathematical Physics, 256(2), 287–303.

    Article  MathSciNet  MATH  Google Scholar 

  14. Devetak, I., & Winter, A. (2005). Distillation of secret key and entanglement from quantum states. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 461(2053), 207–235.

    Article  MathSciNet  MATH  Google Scholar 

  15. Farris, I., Taleb, T., Khettab, Y., & Song, J. (2019). A survey on emerging SDN and NFV security mechanisms for IoT systems. IEEE Communications Surveys Tutorials, 21(1), 812–837.

    Article  Google Scholar 

  16. Fitzek, F. H. P., Granelli, F., & Seeling, P. (2020). Computing in communication networks – From theory to practice (1. Aufl., Bd. 1). Elsevier. https://cn.ifn.et.tu-dresden.de/compcombook/

    Google Scholar 

  17. Granelli, F., & Bassoli, R. (2018). Autonomic mobile virtual network operators for future generation networks. IEEE Network, 32(5), 76–84.

    Article  Google Scholar 

  18. Holevo, A. S. (1973). Bounds for the quantity of information transmitted by a quantum communication channel. Problemy Peredachi Informatsii, 9(3), 3–11.

    MathSciNet  MATH  Google Scholar 

  19. Hsieh, M.-H., & Wilde, M. M. (2010). Entanglement-assisted communication of classical and quantum information. IEEE Transactions on Information Theory, 56(9), 4682–4704.

    Article  MathSciNet  MATH  Google Scholar 

  20. Imre, S., & Gyongyosi, L. (2012). Advanced quantum communications: An engineering approach (1. Aufl.). Wiley-IEEE Press.

    Book  MATH  Google Scholar 

  21. Jaber, M., Imran, M. A., Tafazolli, R., & Tukmanov, A. (2016). 5G backhaul challenges and emerging research directions: A survey. IEEE Access, 4, 1743–1766.

    Article  Google Scholar 

  22. Jalali, F., Hinton, K., Ayre, R., Alpcan, T., & Tucker, R. S. (2016). Fog computing may help to save energy in cloud computing. IEEE Journal on Selected Areas in Communications, 34(5), 1728–1739.

    Article  Google Scholar 

  23. Kimble, H. (2008). The quantum internet. Nature, 453, 1023–1030.

    Article  Google Scholar 

  24. Leditzky, F., Alhejji, M. A., Levin, J., & Smith, G. (2020). Playing games with multiple access channels. Nature Communications, 11(1), 1497.

    Article  Google Scholar 

  25. Li, X., Samaka, M., Chan, H. A., Bhamare, D., Gupta, L., Guo, C., et al. (2017). Network slicing for 5G: Challenges and opportunities. IEEE Internet Computing, 21(5), 20–27.

    Article  Google Scholar 

  26. Liu, J., Jiang, Z., Kato, N., Akashi, O., & Takahara, A. (2016). Reliability evaluation for NFV deployment of future mobile broadband networks. IEEE Wireless Communications, 23(3), 90–96.

    Article  Google Scholar 

  27. Mijumbi, R., Serrat, J., Gorricho, J., Bouten, N., De Turck, F., & Boutaba, R. (2016). Network function virtualization: State-of-the-art and research challenges. IEEE Communications Surveys Tutorials, 18(1), 236–262.

    Article  Google Scholar 

  28. Nötzel, J. (2019). Entanglement-enabled communication. IEEE Journal on Selected Areas in Information Theory, 1(2), 401–415.

    Article  Google Scholar 

  29. Nunes, B. A. A., Mendonca, M., Nguyen, X., Obraczka, K., & Turletti, T. (2014). A survey of software-defined networking: Past, present, and future of programmable networks. IEEE Communications Surveys Tutorials, 16(3), 1617–1634.

    Article  Google Scholar 

  30. Pattaranantakul, M., He, R., Song, Q., Zhang, Z., & Meddahi, A. (2018). NFV security survey: From use case driven threat analysis to state-of-the-art countermeasures. IEEE Communications Surveys Tutorials, 20(4), 3330–3368.

    Article  Google Scholar 

  31. Richart, M., Baliosian, J., Serrat, J., & Gorricho, J. (2016). Resource slicing in virtual wireless networks: A survey. IEEE Transactions on Network and Service Management, 13(3), 462–476.

    Article  Google Scholar 

  32. Schaefer, R. F., & Boche, H. (2014). Physical layer service integration in wireless networks: Signal processing challenges. IEEE Signal Processing Magazine, 31(3), 147–156.

    Article  Google Scholar 

  33. Scott-Hayward, S., Natarajan, S., & Sezer, S. (2016). A survey of security in software defined networks. IEEE Communications Surveys Tutorials, 18(1), 623–654.

    Article  Google Scholar 

  34. Steane, A. M., & Rieffel, E. G. (2000). Beyond bits: The future of quantum information processing. Computer, 33(1), 38–45.

    Article  Google Scholar 

  35. Wehner, S., Elkouss, D., & Hanson, R. (2018). Quantum internet: A vision for the road ahead. Science, 362(6412), eaam9288.

    Article  MathSciNet  MATH  Google Scholar 

  36. Wootters, W. K., & Zurek, W. H. (1982). A single quantum cannot be cloned. Nature, 299(5886), 802–803.

    Article  MATH  Google Scholar 

  37. Xiang, Z., Gabriel, F., Urbano, E., Nguyen, G. T., Reisslein, M., & Fitzek, F. H. P. (2019). Reducing latency in virtual machines: Enabling tactile internet for human-machine co-working. IEEE Journal on Selected Areas in Communications, 37(5), 1098–1116.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bassoli, R. et al. (2023). Einführung. In: Quantenkommunikationsnetze. Springer Vieweg, Cham. https://doi.org/10.1007/978-3-031-26326-2_1

Download citation

Publish with us

Policies and ethics