Skip to main content

Modification of the Bacterial Metabolites by the Host after Absorption, and Consequences for the Peripheral Tissues’ Metabolism, Physiology, and Physiopathology

  • Chapter
  • First Online:
Metabolism of Alimentary Compounds by the Intestinal Microbiota and Health
  • 210 Accesses

Abstract

After synthesis by the intestinal bacteria, several metabolites are absorbed and metabolized by host tissues giving rise to bioactive co-metabolites. In liver, some bacterial metabolites like trimethylamine, indole, p-cresol, and phenylacetate are metabolized, and resulting co-metabolites like trimethylamine N-oxide, indoxyl sulfate, and p-cresyl sulfate impair hepatocyte energy metabolism and viability when produced in excess. In contrast, the bacterial metabolites indole and indole-3 acetate appear protective in situation of hepatic damage. Regarding the gut–kidney axis, the bacterial metabolite p-cresol, as well as the co-metabolites p-cresyl sulfate and indoxyl sulfate act as uremic toxins when synthesized in excess. These latter compounds have been shown to affect mitochondrial function in renal tubular cells and to provoke an inflammatory response. Trimethylamine N-oxide has been identified as a co-metabolite which at excessive concentration increases in experimental work platelet responsiveness to agonists, favors thrombus development within internal carotid artery, and provokes endothelial cell dysfunction. Phenylacetylglutamine is another co-metabolite that is involved in the gut–cardiovascular axis. This compound binds to adrenergic receptors, enhancing platelet activation and clot formation within carotid artery. Other compounds like p-cresol and indoxyl sulfate have been shown to provoke endothelial dysfunction at excessive concentrations. Regarding the gut–brain axis, from experimental works, surprisingly, there are reasons to believe that the metabolic activity of the gut microbiota can influence parameters characteristic of mood disorders. Although the mechanisms involved remain far from being well understood, emerging data indicate that host neurophysiology may be affected by both direct and indirect ways including actions on vagus nerve, enteric nervous system, intestinal immune and neuro-endocrine systems. Interestingly, in animals with no intestinal microbiota, norepinephrine, dopamine, and serotonin turnover are modified in brain suggesting complex relationships between intestinal microbiota and its host. Some compounds derived from the metabolic activity of the gut microbiota, like NH3 may cross the blood–brain barrier and exert adverse effects on the central nervous system in case of liver failure. Tryptamine is another example of bacterial metabolite that can cross the blood–brain barrier function. Among indole-related compounds, isatin and oxindole can enter within the brain, and affect behavior and brain functions. Lastly, the co-metabolite indoxyl sulfate appears to exert, depending on the doses used, both beneficial and deleterious effects on the central nervous system in experimental works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cuevasanta E, Möller MN, Alvarez B. Biological chemistry of hydrogen sulfide and persulfides. Arch Biochem Biophys. 2017;617:9–25.

    Article  CAS  PubMed  Google Scholar 

  2. Zarei I, Koistinen VM, Kokla M, Klavus A, Babu AF, Lehtonen M, Auriola S, Hanhineva K. Tissue-wide metabolomics reveals wide impact of gut microbiota on mice metabolite composition. Sci Rep. 2022;12(1):15018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hou Y, Hu S, Li X, He W, Wu G. Amino acid metabolism in the liver: nutritional and physiological significance. Adv Exp Med Biol. 2020;1265:21–37.

    Article  CAS  PubMed  Google Scholar 

  4. Jones JG. Hepatic glucose and lipid metabolism. Diabetologia. 2016;59(6):1098–103.

    Article  CAS  PubMed  Google Scholar 

  5. Blaak EE, Canfora EE, Theis S, Frost G, Groen AK, Mithieux G, Nauta A, Scott K, Stahl B, van Harsselaar J, van Tol VEE, Verbeke K. Short chain fatty acids in human gut and metabolic health. Benef Microbes. 2020;11(5):411–55.

    Article  CAS  PubMed  Google Scholar 

  6. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27(2):104–19.

    Article  CAS  PubMed  Google Scholar 

  7. Wolever TM, Chiasson JL. Acarbose raises serum butyrate in human subjects with impaired glucose tolerance. Br J Nutr. 2000;84(1):57–61.

    Article  CAS  PubMed  Google Scholar 

  8. Boets E, Gomand S, Deroover L, Preston T, Vermeulen K, De Preter V, Hamer HM, Van den Mooter G, De Vuyst L, Courtin CM, Annaert P, Delcour JA, Verbeke KA. Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study. J Physiol. 2017;595(2):541–55.

    Article  CAS  PubMed  Google Scholar 

  9. Cherbuy C, Darcy-Vrillon B, Morel MT, Pégorier JP, Duée PH. Effect of germ-free state on the capacities of isolated rat colonocytes to metabolize n-butyrate, glucose, and glutamine. Gastroenterology. 1995;109(6):1890–9.

    Article  CAS  PubMed  Google Scholar 

  10. Russell DW. Cholesterol biosynthesis and metabolism. Cardiovasc Drugs Ther. 1992;6(2):103–10.

    Article  CAS  PubMed  Google Scholar 

  11. Bloemen JG, Venema K, van de Poll MC, Olde Damink SW, Buurman WA, Dejong CH. Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clin Nutr. 2009;28(6):657–61.

    Article  CAS  PubMed  Google Scholar 

  12. Kindt A, Liebisch G, Clavel T, Haller D, Hörmannsperger G, Yoon H, Kolmeder D, Sigruener A, Krautbauer S, Seeliger C, Ganza A, Schweiser S, Morisset R, Strowig T, Daniel H, Helm D, Küster B, Krumsiek J, Ecker J. The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice. Nat Commun. 2018;9(1):3760.

    Article  PubMed  PubMed Central  Google Scholar 

  13. den Besten G, Lange K, Havinga R, van Dijk TH, Gerding A, van Eunen K, Müller M, Groen AK, Hooiveld GJ, Bakker BM, Rejingoud DJ. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Phys. 2013;305(12):G900–10.

    Google Scholar 

  14. Zhao S, Jang C, Liu J, Uehara K, Gilbert M, Izzo L, Zeng X, Trefely S, Fernandez S, Carrer A, Miller KD, Schug ZT, Snyder NW, Gade TP, Titchenell TP, Rabinowitz JD, Wellen KE. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature. 2020;579(7800):586–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Demigné C, Morand C, Levrat MA, Besson C, Moundras C, Rémézy C. Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated hepatocytes. Br J Nutr. 1995;74(2):209–19.

    Article  PubMed  Google Scholar 

  16. Wang Lv, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA. Elevated fecal shortchain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig Dis Sci. 2012;57(8):2096-2102

    Google Scholar 

  17. Zeisel SH, Wishnok JS, Blusztajn JK. Formation of methylamines from ingested choline and lecithin. J Pharmacol Exp Ther. 1983;225(2):320–4.

    CAS  PubMed  Google Scholar 

  18. Wiedeman AM, Barr SI, Green TJ, Xu Z, Innis SM, Kitts DD. Dietary choline intake: current state of knowledge across the life cycle. Nutrients. 2018;10(10):1513.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, Hazen SL. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arias N, Arboleya S, Allison J, Kaliszewska A, Higarza SG, Gueimonde M, Arias JL. The relationship between choline bioavailability from diet, intestinal microbiota composition, and its modulation in human diseases. Nutrients. 2020;12(8):2340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Romano KA, Vivas EI, Amador-Noguez D, Rey FE. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. MBio. 2015;6(2):e02481.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Helsley RN, Miyata T, Kadam A, Varadharajan V, Sangwan N, Huang EC, Banerjee R, Brown AL, Fung KK, Massey WJ, Neumann C, Orabi D, Osborn LJ, Schugar RC, McMullen MR, Bellar A, Poulsen KL, Kim A, Pathak V, Mrdjen M, Anderson JT, Willard B, McClain CJ, Mitchell M, McCullough AJ, Radaeva S, Barton B, Szabo G, Dasarathy S, Garcia-Garcia JC, Rotroff DM, Allende DS, Wang Z, Hazen SL, Nagy LE, Brown JM. Gut microbial trimethylamine is elevated in alcohol-associated hepatitis and contributes to ethanol-induced liver injury in mice. elife. 2022;11:e76554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mitchell S, Ayesh R, Barrett T, Smith R. Trimethylamine and foetor hepaticus. Scand J Gastroenterol. 1999;34(5):524–8.

    Article  CAS  PubMed  Google Scholar 

  24. Velasquez MT, Ramezani A, Manal A, Raj DS. Trimethylamine N-oxide: the good, the bad and the unknown. Toxins (Basel). 2016;8(11):326.

    Article  PubMed  Google Scholar 

  25. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, DiDonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WH, Bushman FD, Lusis AJ, Hazen SL. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vaz FM, Wanders RJ. Carnitine biosynthesis in mammals. Biochem J. 2002;136(3):417–29.

    Article  Google Scholar 

  27. Zeisel SH, Warrier M. Trimethylamine-N-oxide, the microbiome, and heart and kidney disease. Annu Rev Nutr. 2017;37:157–81.

    Article  CAS  PubMed  Google Scholar 

  28. Chen YM, Liu Y, Zhou RF, Chen XL, Wang C, Tan XY, Wang LJ, Zheng RD, Zhang HW, Ling WH, Zhu HL. Association of gut flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep. 2016;6:19076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tan X, Liu Y, Long J, Chen S, Liao G, Wu S, Li C, Wang L, Ling W, Zhu H. Trimethylamine-N-oxide aggravates liver steatosis through modulation of bile acid metabolism and inhibition of farnesoid X receptor signaling in nonalcoholic fatty liver disease. Mol Nutr Food Res. 2019a;63(17):e1900257.

    Article  PubMed  Google Scholar 

  30. Flores-Guerrero JL, Post A, van Dijk PR, Connelly MA, Garcia E, Navis G, Bakker SJL, Dullaart RPF. Circulating trimethylamine-N-oxide is associated with all-cause mortality in subjects with nonalcoholic fatty liver disease. Liver Int. 2021;41(10):2371–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rath S, Rox K, Bardenhorst SK, Schminke U, Dörr M, Mayerle J, Frost F, Lerch MM, Karch A, Brönstrup M, Pieper DH, Vital M. Higher trimethylamine-N-oxide plasma levels with increasing age are mediated by diet and trimethylamine-forming bacteria. mSystems. 2021;6(5):e0094521.

    Article  PubMed  Google Scholar 

  32. Beaumont M, Neyrinck AM, Olivares M, Rodriguez J, de Rocca SA, Roumain M, Bindels LB, Cani PD, Evenpoel P, Muccioli GG, Demoulin JB, Delzenne NM. The gut microbiota metabolite indole alleviates liver inflammation in mice. FASEB J. 2018;32(12):fj201800544.

    Article  PubMed  Google Scholar 

  33. Knudsen C, Neyrinck AM, Leyrolle Q, Baldin P, Leclercq S, Rodriguez J, Beaumont M, Cani PD, Bindels LB, Lanthier N, Delzenne NM. Hepatoprotective effects of indole, a gut microbial metabolite, in leptin-deficient obese mice. J Nutr. 2021;151(6):1507–16.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ji Y, Gao Y, Chen H, Yin Y, Zhang W. Indole-3-acetic acid alleviates nonalcoholic fatty liver disease in mice via attenuation of hepatic lipogenesis, and oxidative and inflammatory stress. Nutrients. 2019;11(9):2062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Krishnan S, Ding Y, Saedi N, Choi M, Sridharan GV, Sherr DH, Yarmush ML, Alaniz RC, Jayaraman A, Lee K. Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Rep. 2018;23(4):1099–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gillam EM, Notley LM, Cai H, De Voss JJ, Guengerich FP. Oxidation of indole by cytochrome P450 enzymes. Biochemistry. 2000;39(45):13817–24.

    Article  CAS  PubMed  Google Scholar 

  37. King LJ, Parke DV, Williams RT. The metabolism of (2-14C) indole in the rat. Biochem J. 1966;98(1):266–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106(10):3698–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Poesen R, Mutsaers HAM, Windey K, van den Broek PH, Verweij V, Augustijns P, Kuypers D, Jansen J, Evenepoel P, Verbeke K, Meijers B, Masereeuw R. The influence of dietary protein intake on mammalian tryptophan and phenolic metabolites. PLoS One. 2015;10(10):e0140820.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Beaumont M, Portune KJ, Steuer N, Lan A, Cerrudo V, Audebert M, Dumont F, Mancano G, Khodorova N, Andriamihaja M, Airinei G, Tomé D, Benamouzig R, Davila AM, Claus SP, Sanz Y, Blachier F. Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans. Am J Clin Nutr. 2017;106(4):1005–19.

    Article  CAS  PubMed  Google Scholar 

  41. Banoglu E, Jha GG, King RS. Hepatic microsomal metabolism of indole to indoxyl, a precursor of indoxyl sulfate. Eur J Drug Metab Pharmacokinet. 2001;26(4):235–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Santana Machado T, Poitevin S, Paul P, McKay N, Jourde-Chiche N, Legris T, Mouly-Bandini A, Dignat-George F, Brunet P, Masereeuw R, Burtey S, Cerini C. Indoxyl sulfate upregulates liver P-glycoprotein expression and activity through aryl hydrocarbon receptor signaling. J Am Soc Nephrol. 2018;29(3):906–18.

    Article  PubMed  Google Scholar 

  43. Weigand KM, Schirris TJJ, Houweling M, van der Heuvel JJMW, Koenderink JB, Dankers ACA, Russel FGM, Greupink R. Uremic solutes modulate hepatic bile acid handling and induce mitochondrial toxicity. Toxicol In Vitro. 2019;56:52–61.

    Article  CAS  PubMed  Google Scholar 

  44. Agellon LB, Torchia EC. Intracellular transport of bile acids. Biochim Biophys Acta. 2000;1486(1):198–209.

    Article  CAS  PubMed  Google Scholar 

  45. Gryp T, Vanholder R, Vaneechoutte M, Glorieux G. p-cresyl sulfate. Toxins (Basel). 2017;9(2):52.

    Article  PubMed  Google Scholar 

  46. Rong Y, Kiang TKL. Characterization of human UDP-glucuronosyltransferase enzymes in the conjugation of p-cresol. Toxicol Sci. 2020;176(2):285–96.

    Article  CAS  PubMed  Google Scholar 

  47. Yan Z, Zhong HM, Maher N, Torres R, Leo GC, Caldwell GW, Huebert N. Bioactivation of 4-methylphenol (p-cresol) via cytochrome P450-mediated aromatic oxidation in human liver microsomes. Drug Metab Dispos. 2005;33(12):1867–76.

    CAS  PubMed  Google Scholar 

  48. Witkowski M, Weeks TL, Hazen SL. Gut microbiota and cardiovascular disease. Circ Res. 2020;127(4):553–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schertzer JD, Lam TKT. Peripheral and central regulation of insulin by the intestine and microbiome. Am J Phys. 2021;320(2):E234–9.

    CAS  Google Scholar 

  50. Malaisse WJ, Sener A, Koser M, Herchuelz A. Stimulus-secretion coupling of glucose-induced insulin release. Metabolism of alpha- and beta-D-glucose in isolated islets. J Biol Chem. 1976;251(19):5936–43.

    Article  CAS  PubMed  Google Scholar 

  51. Blachier F, Mourtada A, Sener A, Malaisse WJ. Stimulus-secretion coupling of arginine-induced insulin release. Uptake of metabolized and nonmetabolized cationic amino acids by pancreatic islets. Endocrinology. 1989;124(1):134–41.

    Article  CAS  PubMed  Google Scholar 

  52. Sener A, Blachier F, Rasschaert J, Malaisse WJ. Simulus-secretion coupling of arginine-induced insulin release: comparison with histidine-induced insulin release. Endocrinology. 1990;127(1):107–13.

    Article  CAS  PubMed  Google Scholar 

  53. Sener A, Blachier F, Rasschaert J, Mourtada A, Malaisse-Lagae F, Malaisse WJ. Stimulus-secretion coupling of arginine-induced insulin release: comparison with lysine-induced insulin secretion. Endocrinology. 1989a;124(5):2558–67.

    Article  CAS  PubMed  Google Scholar 

  54. Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, Petersen KF, Kibbey RG, Goodman AL, Shulman GI. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature. 2016;534(7606):213–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pallister T, Jackson MA, Martin TC, Zierer J, Jennings A, Mohney RP, MacGregor A, Steves CJ, Cassidy A, Spector TD, Menni C. Hippurate as a metabolic marker of gut microbiome diversity: modulation by diet and relationship to metabolic syndrome. Sci Rep. 2017;7(1):13670.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Brial F, Chilloux J, Nielsen T, Vieira-Silva S, Falony G, Andrikopoulos P, Olanipekun M, Hoyles L, Djouadi F, Neves AL, Rodriguez-Martinez A, Mouawad GI, Pons N, Forslund S, Le-Chatelier E, Le Lay A, Nicholson J, Hansen T, Hyötyläinen T, Clement K, Oresic M, Bork P, Ehrlich SD, Raes J, Pedersen OB, Gauguier D, Dumas ME. Human and preclinical studies of the host-gut microbiome co-metabolite hippurate as a marker and mediator of metabolic health. Gut. 2021;70(11):2105–14.

    Article  CAS  PubMed  Google Scholar 

  57. Haenisch B, von Kügelgen I, Bönisch H, Göthert M, Sauerbruch T, Schepke M, Marklein G, Höfling K, Schröder D, Molderings GJ. Regulatory mechanisms underlying agmatine homeostasis in humans. Am J Phys. 2008;295(5):G1104–10.

    CAS  Google Scholar 

  58. Sener A, Lebrun P, Blachier F, Malaisse WJ. Stimulus-secretion of arginine-induced insulin release. Insulinotropic action of agmatine. Biochem Pharmacol. 1989b;38(2):327–30.

    Article  CAS  PubMed  Google Scholar 

  59. Vangipurapu J, Fernades Silva L, Kuulasmaa T, Smith U, Laasko M. Microbiota-related metabolites and the risk of type 2 diabetes. Diabetes Care. 2020;43(6):1319–25.

    Article  CAS  PubMed  Google Scholar 

  60. Glassock RJ. Uremic toxins: what are they? An integrated overview of pathobiology and classification. J Renal Nutr. 2008;18(1):2–6.

    Article  Google Scholar 

  61. Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J, European Uremic Toxin Work Group. A bench to bedside view of uremic toxins. J Am Soc Nephrol. 2008a;19(5):863–70.

    Article  PubMed  Google Scholar 

  62. Vanholder R, De Smet R, Glorieux G, Argilés A, Baurmeister U, Brunet P, Clark W, Cohen G, De Deyn PP, Deppisch R, Descamps-Latscha B, Henle T, Jörres A, Lemke HD, Massy ZA, Paaslick-Deetjen J, Rodriguez M, Stegmayr D, Stenvinkel P, Tetta C, Wanner C, Zidek W, European Uremic Toxin Work Group (EU Tox). Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 2003;63(5):1934–43.

    Article  CAS  PubMed  Google Scholar 

  63. Stevens PE, Levin A, Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158(11):825–30.

    Article  PubMed  Google Scholar 

  64. Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, Argiles A, European Uremic Toxin Work Group. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012;23(7):1258–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lim YJ, Sidor NA, Tonial NC, Che A, Urquhart BL. Uremic toxins in the progression of chronic kidney disease and cardiovascular disease: mechanisms and therapeutic targets. Toxins (Basel). 2021;13(2):142.

    Article  CAS  PubMed  Google Scholar 

  66. Blachier F, Andriamihaja M. Effects of L-tyrosine-derived bacterial metabolite p-cresol on colonic and peripheral cells. Amino Acids. 2022;54(3):325–38.

    Article  CAS  PubMed  Google Scholar 

  67. Nigam SK, Bush KT. Uraemic syndrome of chronic kidney disease: altered remote sensing and signalling. Nat Rev Nephrol. 2019;15(5):301–16.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mair RD, Sirich TL, Meyer TW. Uremic toxin clearance and cardiovascular toxicities. Toxins (Basel). 2018;10(6):226.

    Article  PubMed  Google Scholar 

  69. Atherton JG, Hains DS, Bissler G, Pendley BD, Lindner E. Generation, clearance, toxicity, and monitoring possibilities of unaccounted uremic toxins for improved dialysis prescriptions. Am J Phys. 2018;315(4):F890–902.

    CAS  Google Scholar 

  70. Lesaffer G, De Smet R, Lameire N, Dhondt A, Duym P, Vanhorder R. Intradialytic removal of protein-bound uraemic toxins: role of solute characteristics and of dialyser membrane. Nephrol Dial Transplant. 2000;15(1):50–7.

    Article  CAS  PubMed  Google Scholar 

  71. Liu WC, Tomino Y, Lu KC. Impacts of indoxyl sulfate and p-cresol sulfate on chronic kidney disease and mitigating effect of AST-120. Toxins (Basel). 2018;10(9):367.

    Article  PubMed  Google Scholar 

  72. Martinez AW, Recht NS, Hostetter TM, Meyer TW. Removal of p-cresol sulfate by hemodyalisis. J Am Soc Nephrol. 2005;16(11):3430–6.

    Article  CAS  PubMed  Google Scholar 

  73. Meert N, Schepers E, Glorieux G, Van Landschoot M, Goeman JL, Waterloos MA, Dhondt A, Van der Eycken J, Vanholder R. Novel method for simultaneous determination of p-cresylsulphate and p-cresylglucuronide: clinical data and pathophysiological implications. Nephrol Dial Transplant. 2012;27(6):2388–96.

    Article  CAS  PubMed  Google Scholar 

  74. Calaf R, Cerini C, Génovésio C, Verhaeghe P, Jourde-Chiche N, Bergé-Lefranc D, Gondouin B, Dou L, Morange S, Argilés A, Rathelot P, Dignat-George F, Brunet P, Charpiot P. Determination of uremic solutes in biological fluids of chronic kidney disease patients by HPLC assay. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879(23):2281–6.

    Article  CAS  PubMed  Google Scholar 

  75. Chen TC, Wang CY, Hsu CY, Wu CH, Kuo CC, Wang KC, Yang CC, Wu MT, Chuang FR, Lee CT. Free p-cresol sulfate is associated with survival and function of vascular access in chronic hemodialysis patients. Kidney Blood Press Res. 2012;36(6):583–8.

    Article  CAS  Google Scholar 

  76. De Smet R, David F, Sandra P, Van Kaer J, Lesaffer G, Dhondt A, Lameire N, Vanholder R. A sensitive HPLC method for uqntification of free and total p-cresol in patients with chronic renal failure. Clin Chim Acta. 1998;278(1):1–21.

    Article  PubMed  Google Scholar 

  77. Faguli RM, De Smet R, Buoncristiani U, Lameire N, Vanholder R. Behavior of non-protein-bound and protein-bound uremic solutes during daily hemodialysis. Am J Kidney Dis. 2002;40(2):339–47.

    Article  Google Scholar 

  78. Gryp T, De Paepe K, Vanholder R, Kerckhof FM, Van Biesen W, Van de Wiele T, Verbeke F, Speeckaert M, Joossens M, Couttenye MM, Veneechoutte M, Glorieux G. Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney Int. 2020;97(6):1230–42.

    Article  CAS  PubMed  Google Scholar 

  79. Hsu HJ, Yen CH, Wu IW, Hsu KH, Chen CK, Sun CY, Chou CC, Chen CY, Tsai CJ, Wu MS, Lee CC. The association of uremic toxins and inflammation in hemodialysis patients. PLoS One. 2014;9(7):e102691.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ikematsu N, Kashiwagi M, Hara K, Waters B, Matsusue A, Takayama M, Kubo SI. Organ distribution of endogenous p-cresol in hemodialysis patients. J Med Investig. 2019;66(1.2):81–5.

    Article  Google Scholar 

  81. Leong SC, Sao JN, Taussig A, Plummer NS, Meyer TW, Sirich TL. Residual function effectively controls plasma concentrations of secreted solutes in patients on twice weekly hemodialysis. J Am Soc Nephrol. 2018;29(7):1992–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lin CJ, Wu CJ, Pan CF, Chen YC, Sun FJ, Chen HH. Serum protein-bound uraemic toxins and clinical outcomes in haemodialysis patients. Nephrol Dial Transplant. 2010;25(11):3693–700.

    Article  CAS  PubMed  Google Scholar 

  83. Nakabayashi I, Nakamura M, Kawakami K, Ohta T, Kato I, Uchida K, Yoshida M. Effects of symbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study. Nephrol Dial Transplant. 2011;26(3):1094–8.

    Article  CAS  PubMed  Google Scholar 

  84. Poesen R, Evenepoel P, de Loor H, Kuypers D, Augustijns P, Meijers B. Metabolism, protein binding, and renal clearance of microbiota-derived p-cresol in patients with CKD. Clin J Am Soc Nephrol. 2016;11(7):1136–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Prokopienko AJ, West RE 3rd, Stubbs JR, Nolin TD. Development and validation of a UHPLC-MS/MS method for measurement of a gut-derived uremic toxin panel in human serum: an application in patients with kidney disease. J Pharm Biomed Anal. 2019;174:618–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Salmean YA, Segal MS, Palii SP, Dahl WJ. Fiber supplementation lowers plasma p-cresol in chronic kidney disease patients. J Ren Nutr. 2015;25(3):316–20.

    Article  CAS  PubMed  Google Scholar 

  87. Sirich TL, Fong K, Larive B, Beck GJ, Chertow GM, Levin NW, Kliger AS, Plummer NS, Meyer TW. Limited reduction in uremic solute concentrations with increased dialysis frequency and time in the frequent Hemodialysis network daily trial. Kidney Int. 2017;91(5):1186–92.

    Article  CAS  PubMed  Google Scholar 

  88. Sirich TL, Funk BA, Plummers NS, Hostetter TH, Meyer TW. Prominent accumulation in hemodialysis patients of solutes normally cleared by tubular secretion. J Am Soc Nephrol. 2014;25(3):615–22.

    Article  CAS  PubMed  Google Scholar 

  89. Sirich TL, Aronov PA, Plummer NS, Hostetter TH, Meyer TW. Numerous protein-bound solutes are cleared by the kidney with high efficiency. Kidney Int. 2013;84(3):585–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wu W, Bush KT, Nigam SK. Key role for the organic anion transporters, OAT1 and OAT3, in the in vivo handling of uremic toxins and solutes. Sci Rep. 2017;7:4939.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wu IW, Hsu KH, Lee CC, Sun CY, Hsu HJ, Tsai CJ, Tzen CY, Wang YC, Lin CY, Wu MS. p-cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol Dial Transplant. 2011;26(3):938–47.

    Article  CAS  PubMed  Google Scholar 

  92. Bammens B, Evenepoel P, Keuleers H, Verbeke K, Vanrenterghem Y. Free serum concentrations of the protein-bound retention solute p-cresol predict mortality in hemodialysis patients. Kidney Int. 2006;69:1081–7.

    Article  CAS  PubMed  Google Scholar 

  93. Sun CY, Chang SC, Wu MS. Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition. PLoS One. 2012;7:e34026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Poesen R, Viaene L, Verbeke K, Claes K, Bammens B, Sprangers B, Naesens M, Vanrenterghem Y, Kuypers D, Evenepoel P, Meijers B. Renal clearance and intestinal generation of p-cresyl sulfate and indoxyl sulfate in CKD. Clin J Am Soc Nephrol. 2013;8(9):1508–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Watanabe H, Miyamoto Y, Honda D, Tanaka H, Wu Q, Endo M, Noguchi T, Kadowaki D, Ishima Y, Kotani S, Nakajima M, Kataoka K, Kim-Mitsuyama S, Tanaka M, Fukagawa M, Otagiri M, Maruyama T. p-cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation by NADPH oxidase. Kidney Int. 2013;83(4):582–92.

    Article  CAS  PubMed  Google Scholar 

  96. Sun CY, Hsu HH, Wu MS. p-cresol sulfate and indoxyl sulfate induce similar cellular inflammatory gene expression in cultured proximal renal tubular cells. Nephrol Dial Transplant. 2013;28(1):70–8.

    Article  CAS  PubMed  Google Scholar 

  97. Sun CY, Cheng ML, Pan HC, Lee JH, Lee CC. Protein-bound uremic toxins impaired mitochondrial dynamics and functions. Oncotarget. 2017;8:77722–33.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Brocca A, Virzi GM, de Cal M, Cnataluppi V, Ronco C. Cytotoxic effects of p-cresol in renal epithelial tubular cells. Blood Purif. 2013;36(3–4):219–25.

    Article  PubMed  Google Scholar 

  99. Lin HH, Huang CC, Lin TY, Lin CY. P-cresol mediates autophagic cell death in renal proximal tubular cells. Toxicol Lett. 2015;234:20–9.

    Article  CAS  PubMed  Google Scholar 

  100. Khosroshahi HT, Abedi B, Ghoiazadeh M, Samadi A, Jouyban A. Effects of fermentable high fiber diet supplementation on gut-derived and conventional nitrogenous product in patients on maintenance hemodialysis: a randomized controlled trial. Nutr Metab. 2019;16:18.

    Article  Google Scholar 

  101. Meijers BK, De Preter V, Verbeke K, Vanrenterghem Y, Evenpoel P. p-cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol Dial Transplant. 2010b;25(1):219–24.

    Article  CAS  PubMed  Google Scholar 

  102. Meyer TW, Hostetter TH. Uremic solutes from colon microbes. Kidney Int. 2012;81(10):949–54.

    Article  CAS  PubMed  Google Scholar 

  103. Ko GJ, Obi Y, Tortorici AR, Kalantar-Zadeh K. Dietary protein intake and chronic kidney disease. Curr Opin Clin Nutr Metab. 2017;20(1):77–85.

    Article  CAS  Google Scholar 

  104. Vanholder R, Schepers E, Pletinck A, Nagler EV, Glorieux G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J Am Soc Nephrol. 2014;25(9):1897–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vanholder R, Meert N, Schepers E, Glorieux G. Uremic toxins: do we know enough to explain uremia? Blood Purif. 2008b;26(1):77–81.

    Article  CAS  PubMed  Google Scholar 

  106. Cheng TH, Ma MC, Liao MT, Zheng CM, Lu KC, Liao CH, Hou YC, Liu WC, Lu CL. Indoxyl sulfate, a tubular toxin, contributes to the development of chronic kidney disease. Toxins (Basel). 2020;12(11):684.

    Article  CAS  PubMed  Google Scholar 

  107. Devine E, Krieter DH, Ruth M, Jankovski J, Lemke HD. Binding affinity and capacity for the uremic toxin indoxyl sulfate. Toxins (Basel). 2014;6(2):416–29.

    Article  PubMed  Google Scholar 

  108. Viaene L, Annaert P, de Loor H, Poesen R, Evenepoel P, Meijers B. Albumin is the main plasma binding protein for indoxyl sulfate and p-cresyl sulfate. Biopharm Drug Dispos. 2013;34(3):165–75.

    Article  CAS  PubMed  Google Scholar 

  109. Enomoto A, Takeda M, Tojo A, Sekine T, Cha SH, Khamdang S, Takayama F, Aoyama I, Nakamura S, Endou H, Niwa T. Role of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its nephrotoxicity. J Am Soc Nephrol. 2002;13(7):1711–20.

    Article  CAS  PubMed  Google Scholar 

  110. Hobby GP, Karaduta O, Dusio GF, Singh M, Zybailov BL, Arthur JM. Chronic kidney disease and the gut microbiome. Am J Phys. 2019;316(6):F1211–7.

    CAS  Google Scholar 

  111. Fujii H, Goto S, Fukagawa M. Role of uremic toxins for kidney, cardiovascular and bone dysfunction. Toxins (Basel). 2018;10(5):202.

    Article  PubMed  Google Scholar 

  112. Wang W, Hao G, Pan Y, Ma S, Yang T, Shi P, Zhu Q, Xie Y, Ma S, Zhang Q, Ruan H, Ding F. Serum indoxyl sulfate is associated with mortality in hospital-acquired acute kidney injury: a prospective cohort study. BMC Nephrol. 2019;20(1):57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tan X, Cao X, Zhou J, Shen B, Zhang X, Liu Z, Lv W, Teng J, Ding X. Indoxyl sulfate, a valuable biomarker in chronic kidney disease and dialysis. Hemodial Int. 2017;21(2):161–7.

    Article  PubMed  Google Scholar 

  114. Bolati D, Shimizu H, Yisireyili M, Nishijima F, Niwa T. Indoxyl sulfate, a uremic toxin, downregulates renal expression of Nrf2 through activation of NF-κB. BMC Nephrol. 2013;14:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Shimizu H, Yisireyili M, Higashiyama Y, Nishijima F, Niwa T. Indoxyl sulfate upregulates renal expression of ICAM-1 via production of ROS and activation of NF-kappaB and p53 in proximal tubular cells. Life Sci. 2013;92(2):143–8.

    Article  CAS  PubMed  Google Scholar 

  116. Motojima M, Hosokawa A, Yamato H, Muraki T, Yoshioka T. Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-kappaB and free radical in proximal tubular cells. Kidney Int. 2003;63(5):1671–80.

    Article  CAS  PubMed  Google Scholar 

  117. Edamatsu T, Fujieda A, Itoh Y. Phenyl sulfate, indoxyl sulfate and p-cresyl sufate decrease glutathione level to render cells vulnerable to oxidative stress in renal tubular cells. PLoS One. 2018;13(2):e0193342.

    Article  PubMed  PubMed Central  Google Scholar 

  118. D’Autréaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007;8(10):813–24.

    Article  PubMed  Google Scholar 

  119. Owada S, Goto S, Bannai K, Hayashi H, Nishijima F, Niwa T. Indoxyl sulfate reduces superoxide scavenging activity in the kidneys of normal and uremic rats. Am J Nephrol. 2008;28(3):446–54.

    Article  CAS  PubMed  Google Scholar 

  120. Peskin AV. Cu,Zn-superoxide dismutase gene dosage and cell resistance to oxidative stress: a review. Biosci Rep. 1997;17(1):85–9.

    Article  CAS  PubMed  Google Scholar 

  121. Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal. 2016;25(3):119–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Humphreys BD. Mechanisms of renal fibrosis. Annu Rev Physiol. 2018;80:309–26.

    Article  CAS  PubMed  Google Scholar 

  123. Miyazaki T, Ise M, Hirata M, Endo K, Ito Y, Seo H, Niwa T. Indoxyl sulfate stimulates renal synthesis of transforming growth factor-beta 1 and progression of renal failure. Kidney Int. 1997;63:S211–4.

    CAS  Google Scholar 

  124. Milanesi S, Garibaldi S, Saio M, Ghigliotti G, Picciotto D, Ameri P, Garibotto G, Barisione C, Verzola D. Indoxyl sulfate induces renal fibroblast activation through a targetable heat shock protein 90-dependent pathway. Oxidative Med Cell Longev. 1997;2019:2050183.

    Google Scholar 

  125. Shimizu H, Yisireyili M, Nishijima F, Niwa T. Stat3 contributes to indoxyl sulfate-induced inflammatory and fibrotic gene expression and cellular senescence. Am J Nephrol. 2012;36(2):184–9.

    Article  CAS  PubMed  Google Scholar 

  126. Hamaya R, Ivey KL, Lee DH, Wang M, Li J, Franke A, Sun Q, Rimm EB. Association of diet with circulating trimethylamine-N-oxide concentration. Am J Clin Nutr. 2020;112(6):1448–55.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Bain MA, Faull R, Fornasini G, Milne RW, Evans AM. Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrol Dial Transplant. 2006;21(5):1300–4.

    Article  CAS  PubMed  Google Scholar 

  128. Bell JD, Lee JA, Lee HA, Sadler PJ, Wilkie DR, Woodham RH. Nuclear magnetic resonance studies of blood plasma and urine from subjects with chronic renal kidney failure: identification of trimethylamine-N-oxide. Biochim Biophys Acta. 1991;1096(2):101–7.

    Article  CAS  PubMed  Google Scholar 

  129. Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, Li XS, Levison BS, Hazen SL. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015a;116(3):448–55.

    Article  CAS  PubMed  Google Scholar 

  130. Zeng Y, Guo M, Fang X, Teng F, Tan X, Li X, Wang M, Long Y, Xu Y. Gut microbiota-derived trimethylamine N-oxide and kidney function: a systematic review and meta-analysis. Adv Nutr. 2021;12(4):1286–304.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Zhang W, Miikeda A, Zuckerman J, Jia X, Charugundla S, Zhou Z, Kaczor-Urbanowicz KE, Magyar C, Guo F, Wang Z, Pelligrini M, Hazen SL, Nicholas SB, Lusis AJ, Shih DM. Inhibition of microbiota-dependent TMAO production attenuates chronic kidney disease in mice. Sci Rep. 2021;11(1):518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dong F, Jiang S, Tang C, Wang X, Ren X, Wei Q, Tian J, Hu W, Guo J, Fu X, Liu L, Patzak A, Persson PB, Gao F, Lai EY, Zhao L. Trimethylamine N-oxide promotes hyperoxaluria-induced calcium oxalate deposition and kidney injury by activating autophagy. Free Radic Biol Med. 2022;179:288–300.

    Article  CAS  PubMed  Google Scholar 

  133. Fogelman AM. TMAO is both a biomarker and a renal toxin. Circ Res. 2015;116(3):396–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Senthong V, Wang Z, Fan Y, Wu Y, Hazen SL, Tang WH. Trimethylamine N-oxide and mortality risk in patients with peripheral artery disease. J Am Heart Assoc. 2016b;5(10):e004237.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Senthong V, Li XS, Hudec T, Coughlin J, Wu Y, Levison B, Wang Z, Hazen SL, Tang WH. Plasma trimethylamine N-oxide, a gut microbe-generated phosphatidylcholine metabolite, is associated with atherosclerotic burden. J Am Coll Cardiol. 2016a;67(22):2620–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li XS, Obeid S, Klingenberg R, Gencer B, Mach F, Räber L, Windecker S, Rodondi N, Nanchen D, Muller O, Miranda MX, Matter CM, Wu Y, Li L, Wang Z, Alamri HS, Gogonea V, Chung YM, Tang WH, Hazen SL, Lüscher TF. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J. 2017b;38(11):814–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Tan Y, Sheng Z, Zhou P, Liu C, Zhao H, Song L, Li J, Zhou J, Chen Y, Wang L, Qian H, Sun Z, Qiao S, Xu B, Gao R, Yan H. Plasma trimethylamine N-oxide as a novel biomarker for plaque rupture in patients with ST-segment-elevation myocardial infarction. Circ Cardiovasc Interv. 2019b;12(1):e007281.

    Article  CAS  PubMed  Google Scholar 

  138. Lever M, George PM, Slow S, Bellamy D, Young JM, Ho M, McEntyre CJ, Elmslie JL, Atkinson W, Molyneux SL, Troughton RW, Frampton CM, Richards AM, Chambers ST. Betaine and trimethylamine-N-oxide as predictors of cardiovascular outcomes show different patterns in diabetes mellitus: an observational study. PLoS One. 2014;9(12):e114969.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Suzuki T, Heaney LM, Bhandari SS, Jones DJL, Ng LL. Trimethylamine N-oxide and prognosis in acute heart failure. Heart. 2016;102(11):841–8.

    Article  CAS  PubMed  Google Scholar 

  140. Tang WH, Wang Z, Shrestha K, Borowski AG, Wu Y, Troughton RW, Klein AL, Hazen SL. Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Card Fail. 2015b;21(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  141. Troseid M, Ueland T, Hov JR, Svardal A, Gregersen I, Dahl CP, Aaklus S, Gude E, Bjorndal B, Halvorsen B, Karlsen TH, Aukrust P, Gullestad L, Berge RK, Yndestad A. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med. 2015;277(6):717–26.

    Article  CAS  PubMed  Google Scholar 

  142. Haghikia A, Li XS, Liman TG, Bledau N, Schmidt D, Zimmermann F, Kränkel N, Widera C, Sonnenschein K, Haghikia A, Weissenborn K, Fraccarollo D, Heimesaat MM, Bauersachs J, Wang Z, Zhu W, Bavendiek U, Hazen SL, Endres M, Landmesser U. Gut microbiota-dependent trimethylamine N-oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscler Thromb Vasc Biol. 2018;38(9):2225–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Heianza Y, Ma W, Manson JE, Rexrode KM, Qi L. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta-analysis of prospective studies. J Am Heart Assoc. 2017;6(7):e004947.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Qi J, You T, Li J, Pan T, Xiang L, Han Y, Zhu L. Circulating trimethylamine N-oxide and the risk of cardiovascular diseases: a systematic review and meta-analysis of 11 prospective cohort studies. J Cell Mol Med. 2018;22(1):185–94.

    Article  CAS  PubMed  Google Scholar 

  145. Ding L, Chang M, Guo Y, Zhang L, Xue C, Yanagita T, Zhang T, Wang Y. Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids Health Dis. 2018;17(1):286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, Gu X, Huang Y, Zamanian-Daryoush M, Culley MK, DiDonato AJ, Fu X, Hazen JE, Krajcik D, DiDonato JA, Lusis AJ, Hazen SL. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163(7):1585–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wu P, Chen JN, Chen JJ, Tao J, Wu SY, Xu GS, Wang Z, Wei DH, Yin WD. Trimethylamine N-oxide promotes apoE−/− mice atherosclerosis by inducing vascular endothelial cell pyroptosis via SDHB/ROS pathway. J Cell Physiol. 2020;235(10):6582–91.

    Article  CAS  PubMed  Google Scholar 

  148. Xu J, Zhou D, Poulsen O, Imamura T, Hsiao YH, Smith TH, Malhotra A, Dorrestein P, Knight R, Haddad GG. Intermittent hypoxia and hypercapnia accelerate atherosclerosis, partially via trimethylamine-oxide. Am J Respir Cell Mol Biol. 2017;57(5):581–8.

    Article  Google Scholar 

  149. Aldana-Hernandez P, Leonard KA, Zhao YY, Curtis JM, Field CJ, Jacobs RL. Dietary choline or trimethylamine N-oxide supplementation does not influence atherosclerosis development in Ldlr−/− and Apoe−/− male mice. J Nutr. 2020;150(2):249–55.

    Article  PubMed  Google Scholar 

  150. Blachier F, Andriamihaja M, Blais A. Sulfur-containing amino acids and lipid metabolism. J Nutr. 2020;150(S1):2524S–31S.

    Article  PubMed  Google Scholar 

  151. Chang Y, Robidoux J. Dyslipidemia management update. Curr Opin Pharmacol. 2017;33:47–55.

    Article  CAS  PubMed  Google Scholar 

  152. Schaefer EJ, Geller AS, Endress G. The biochemical and genetic diagnosis of lipid disorders. Curr Opin Lipidol. 2019;30(2):56–62.

    Article  CAS  PubMed  Google Scholar 

  153. Warrier M, Shih DM, Burrows AC, Ferguson D, Gromovsky AD, Brown AL, Marshall S, McDaniel A, Schugar RC, Wang Z, Sacks J, Rong X, de Aguiar Vallim T, Chou J, Ivanova PT, Myers DS, Brown HA, Lee RG, Crooke RM, Graham MJ, Liu X, Parini P, Tontonoz P, Lusis AJ, Hazen SL, Temel RE, Brown JM. The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep. 2015;10(3):326–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Pathak P, Helsley RN, Brown AL, Buffa JA, Choucair I, Nemet I, Gogonea CB, Gogonea V, Wang Z, Garcia-Garcia JC, Cai L, Temel R, Sangwan N, Hazen SL, Brown JM. Small molecule inhibition of gut microbial choline trimethylamine lyase activity alters host cholesterol and bile acid metabolism. Am J Phys. 2020;318(6):H1474–86.

    CAS  Google Scholar 

  155. Frossard M, Fuchs I, Leitner JM, Hsieh K, Vlcek M, Losert H, Domanovits H, Schreiber W, Laggner AN, Jilma B. Platelet function predicts myocardial damage in patients with acute myocardial infarction. Circulation. 2004;110(11):1392–7.

    Article  PubMed  Google Scholar 

  156. Tantry US, Bonello L, Aradi D, Price MJ, Jeong YH, Angiolillo DJ, Stone GW, Curzen N, Geisler T, Ten Berg J, Kirtane A, Siller-Matula J, Mahla E, Becker RC, Bhatt DL, Waksman R, Rao SV, Alexopoulos D, Marcucci R, Reny JL, Trenk D, Sibbing D, Gurbel PA, Working Group on On-Treatment Platelet Reactivity. Consensus and debate on the definition of on-treatment platelet reactivity to adenosine diphosphate associated with ischemia and bleeding. J Am Coll Cardiol. 2013;62(24):2261–73.

    Article  CAS  PubMed  Google Scholar 

  157. Jennings LK. Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherosclerosis. Thromb Haemost. 2009;102(2):248–57.

    CAS  PubMed  Google Scholar 

  158. Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, Balfour Sartor R, McIntyre TM, Silverstein RL, Tang WHW, DiDonato JA, Brown JM, Lusis AJ, Hazen SL. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165(1):111–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhu W, Buffa JA, Wang Z, Warrier M, Schugar R, Shih DM, Gupta N, Gregory JC, Org E, Fu X, Li L, DiDonato JA, Lusis AJ, Brown JM, Hazen SL. Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethylamine N-oxide-generating pathway, modulates platelet responsiveness and thrombosis risk. J Thromb Haemost. 2018;16(9):1857–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Gimbrone MA Jr, Garcia-Cardena G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118(4):620–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Witkowski M, Landmesser U, Rauch U. Tissue factor as a link between inflammation and coagulation. Trends Cardiovasc Med. 2016;26(4):297–303.

    Article  CAS  PubMed  Google Scholar 

  162. Cheng X, Qiu X, Liu Y, Yuan C, Yang X. Trimethylamine-N-oxide promotes tissue factor expression and activity in vascular endothelial cells: a new link between trimethylamine N-oxide and atherosclerotic thrombosis. Thromb Res. 2019;177:110–6.

    Article  CAS  PubMed  Google Scholar 

  163. Seldin MM, Meng Y, Qi H, Zhu W, Wang Z, Hazen SL, Lusis AJ, Shih DM. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB. J Am Heart Assoc. 2016;5(2):e002767.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Ke Y, Li D, Zhao M, Liu C, Liu J, Zeng A, Shi X, Cheng S, Pan B, Zheng L, Hong H. Gut flora-dependent metabolite trimethylamine-N-oxide accelerates endothelial cell senescence and vascular aging through oxidative stress. Free Radic Biol Med. 2018;116:88–100.

    Article  CAS  PubMed  Google Scholar 

  165. Chen ML, Zhu XH, Ran L, Lang HD, Yi L, Mi MT. Trimethylamine-N-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway. J Am Heart Assoc. 2017b;6(9):e006347.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Lamkanfi M, Dixit VM. Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol. 2012;28:137–61.

    Article  CAS  PubMed  Google Scholar 

  167. Rathinam VA, Fitzgerald KA. Inflammasome complexes: emerging mechanisms and effector functions. Cell. 2016;165(4):792–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Boini KM, Hussain T, Li PL, Koka S. Trimethylamine-N-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction. Cell Physiol Biochem. 2017;44(1):152–62.

    Article  PubMed  Google Scholar 

  169. Sun X, Jiao X, Ma Y, Liu Y, Zhang L, He Y, Chen Y. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochem Biophys Res Commun. 2016;481(1–2):63–70.

    Article  CAS  PubMed  Google Scholar 

  170. Nemet I, Saha PP, Gupta N, Zhu W, Romano KA, Skye SM, Cajka T, Mohan ML, Li L, Wu Y, Funabashi M, Ramer-Tait AE, Naga Prasad SV, Fiehn O, Rey FE, Tang WHW, Fischbach MA, DiDonato JA, Hazen SL. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell. 2020;180(5):862–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Offermanns S. Activation of platelet function through G protein-coupled receptors. Circ Res. 2006;99(12):1293–304.

    Article  CAS  PubMed  Google Scholar 

  172. Wang J, Gareri C, Rockman HA. G-protein-coupled receptors in heart disease. Circ Res. 2018;123(6):716–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Dou L, Bertrand E, Cerini C, Faure V, Sampol J, Vanholder R, Berland Y, Brunet P. The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair. Kidney Int. 2004;65(2):442–51.

    Article  CAS  PubMed  Google Scholar 

  174. Wheeler DC. Cardiovascular disease in patients with chronic renal failure. Lancet. 1996;348(9043):1673–4.

    Article  CAS  PubMed  Google Scholar 

  175. Meijers BK, Claes K, Bammens B, de Loor H, Viaene L, Verbeke K, Kuypers D, Vanrenterghem Y, Evenepoel P. p-cresol and cardiovascular risk in mild- to-moderate kidney disease. Clin J Am Soc Nephrol. 2010a;5(7):1182–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Poesen R, Viaene L, Verbeke K, Augustijns P, Bammens B, Claes K, Kuypers D, Evenepoel P, Meijers B. Cardiovascular diseases relates to intestinal uptake of p-cresol in patients with chronic kidney disease. BMC Nephrol. 2014;15:87.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Meijers BKI, Bammens B, De Moore B, Verbeke K, Vanrenterghem Y, Evenepoel P. Free p-cresol is associated with cardiovascular disease in hemodialysis patients. Kidney Int. 2008;73(10):1174–80.

    Article  CAS  PubMed  Google Scholar 

  178. Wu IW, Hsu KH, Hsu HJ, Lee CC, Sun CY, Tsai CJ, Wu MS. Serum free p-cresyl sulfate levels predict cardiovascular and all-cause mortality in the elderly hemodialysis patients: a prospective cohort study. Nephrol Dial Transplant. 2012;27(3):1169–75.

    Article  CAS  PubMed  Google Scholar 

  179. Melamed ML, Plantinga L, Shafi T, Parekh R, Meyer TW, Hostetter TH, Coresh J, Powe NR. Retained organic solutes, patient characteristics and all-cause and cardiovascular mortality in hemodialysis: results from the retained organic solutes and clinical outcomes (ROSCO) investigators. BMC Nephrol. 2013;14:134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Shafi T, Sirich TL, Meyer TW, Hostetter TH, Plummer NS, Hwang S, Melamed ML, Banerjee T, Coresh J, Powe NR. Results of the HEMO study suggest that p-cresol sulfate and indoxyl sulfate are not associated with cardiovascular outcomes. Kidney Int. 2017;92(6):1484–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med. 1999;340(2):115–26.

    Article  CAS  PubMed  Google Scholar 

  182. Kari JA, Doland AE, Vallance DT, Bruckdorfer KR, Leone A, Mullen MJ, Bunce T, Dorado B, Deanfield JE, Rees L. Physiology and biochemistry of endothelial function in children with chronic kidney failure. Kidney Int. 1997;52(2):468–72.

    Article  CAS  PubMed  Google Scholar 

  183. Lee TY, Noria S, Lee J, Gotlieb AI. Endothelial integrity and repair. Adv Exp Med Biol. 2001;498:65–74.

    Article  CAS  PubMed  Google Scholar 

  184. Chang MC, Chang HH, Chan CP, Yeung SY, Hsien HC, Lin BR, Yeh CY, Tseng WY, Tseng SK, Jeng JH. p-cresol affects reactive oxygen species generation, cell cycle arrest, cytotoxicity and inflammation/atherosclerosis-related modulators production in endothelial cells and mononuclear cells. PLoS One. 2014;9:e114446.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Li L, Li J, Li X, Yuan FH. Protein-bound p-cresol inhibits human umbilical vein endothelial cell proliferation by inducing cell cycle arrest at G(0)/G(1). Am J Transl Res. 2017a;9(4):2013–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Cerini C, Dou L, Anfosso F, Sabatier F, Moal V, Glorieux G, De Smet R, Vanholder R, Dignat-George F, Sampol J, Berland Y, Brunet P. P-cresol, a uremic retention solute, alters the endothelial barrier function in vitro. Thromb Haemost. 2004;92(1):140–50.

    CAS  PubMed  Google Scholar 

  187. Zhu JZ, Zhang J, Yang K, Du R, Jing YJ, Lu L, Zhang RY. p-cresol, but not p-cresylsulphate, disrupts endothelial progenitor cell function in vitro. Nephrol Dial Transplant. 2012;27(12):4323–30.

    Article  CAS  PubMed  Google Scholar 

  188. Ying Y, Yang K, Liu Y, Chen QJ, Shen WF, Lu L, Zhang RY. A uremic solute, p-cresol, inhibits the proliferation of endothelial progenitor cells via the p38 pathway. Circ J. 2011;75(9):2252–9.

    Article  CAS  PubMed  Google Scholar 

  189. Faure V, Dou L, Sabatier F, Cerini C, Sampol J, Berland Y, Brunet P, Dignat-George F. Elevation of circulating endothelial microparticles in patients with chronic renal failure. J Thromb Haemost. 2006;4(3):566–73.

    Article  CAS  PubMed  Google Scholar 

  190. Deng F, Wang S, Zhang L. Endothelial microparticles act as novel diagnostic and therapeutic biomarkers of circulatory hypoxia-related diseases: a literature review. J Cell Mol Med. 2017;21(9):1698–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ridger VC, Boulanger CM, Angelillo-Scherrer A, Badion L, Blanc-Brude O, Bochaton-Piallat ML, Boilard E, Buzas EI, Caporali A, Dignat-George F, Evans PC, Lacroix R, Lutgens E, Ketelhuth DFJ, Nieuwland R, Toti F, Tunon J, Weber C, Hoefer IE. Microvesicles in vascular homeostasis and diseases. Position paper of the European Society of Cardiology (ESC) working group on atherosclerosis and vascular biology. Thromb Haemost. 2017;117(7):1296–316.

    Article  PubMed  Google Scholar 

  192. Guerrero F, Carmona A, Obrero T, Jimenez MJ, Soriano S, Moreno JA, Martin-Malo A, Aljama P. Role of endothelial microvesicles released by p-cresol on endothelial dysfunction. Sci Rep. 2020;10(1):10657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Amabile N, Guérin AP, Leroyer A, Mallat Z, Nguyen C, Boddaert J, London GM, Tedgui A, Boulanger CM. Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. J Am Soc Nephrol. 2005;16(11):3381–8.

    Article  CAS  PubMed  Google Scholar 

  194. Garcia-Jerez A, Luengo A, Carracedo J, Ramirez-Chamond R, Rodriguez-Puyol M, Calleros L. Effects of uremia on endothelial cell damage is mediated by the integrin linked kinase pathway. J Physiol. 2015;593(3):601–18.

    Article  CAS  PubMed  Google Scholar 

  195. Cho HJ, Youn SW, Cheon SI, Kim TY, Hur J, Zhang SY, Lee SP, Park KW, Lee MM, Choi YS, Park YB, Kim HS. Regulation of endothelial cell and endothelial progenitor cell survival and vasculogenesis by integrin-linked kinase. Arterioscler Thromb Vasc Biol. 2005;25(6):1154–60.

    Article  CAS  PubMed  Google Scholar 

  196. Friedrich EB, Liu E, Sinha S, Cook S, Milstone DS, MacRae CA, Mariotti M, Kuhlencordt PJ, Force T, Rosenzweig A, St-Arnaud R, Dedhar S, Gerszten RE. Integrin-linked kinase regulates endothelial cell survival and vascular development. Mol Cell Biol. 2004;24(18):8134–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kaneko Y, Kitazato K, Basaki Y. Integrin-linked kinase regulates vascular morphogenesis induced by vascular endothelial growth factor. J Cell Sci. 2004;117(3):407–15.

    Article  CAS  PubMed  Google Scholar 

  198. Guo Y, Pu WT. Cardiomyocyte maturation: new phase in development. Circ Res. 2020;126(8):1086–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Peng YS, Ding HC, Lin YT, Syu JP, Chen Y, Wang SM. Uremic toxin p-cresol induces disassembly of gap junctions of cardiomyocytes. Toxicology. 2012;302(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  200. Peng YS, Lin YT, Wang SD, Hung KY, Chen Y, Wang SM. p-cresol induces disruption of cardiomyocyte adherens junctions. Toxicology. 2013;306:176–84.

    Article  CAS  PubMed  Google Scholar 

  201. Lano G, Burtey S, Sallee M. Indoxyl sulfate, a uremic endotheliotoxin. Toxins (Basel). 2020;12(4):229.

    Article  CAS  PubMed  Google Scholar 

  202. Belghasem M, Roth D, Richards S, Napolene MA, Walker J, Yin W, Arinze N, Lyle C, Spencer C, Francis JM, Thompson C, Andry C, Whelan SA, Lee N, Ravid K, Chitalia VC. Metabolites in a mouse cancer model enhance venous thrombogenicity through the aryl hydrocarbon receptor-tissue factor axis. Blood. 2019;134(26):2399–413.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Karbowska M, Kaminski TW, Marcinczyk N, Misztal T, Rusak T, Smyk L, Pawlak D. The uremic toxin indoxyl sulfate accelerates thrombotic response after vascular injury in animal models. Toxins (Basel). 2017;9(7):229.

    Article  PubMed  Google Scholar 

  204. Karbowska M, Kaminski TW, Znorko B, Domaniewski T, Misztal T, Rusak T, Pryczynicz A, Guzinska-Ustymowicz K, Pawlak K, Pawlak D. Indoxyl sulfate promotes arterial thrombosis in rat model via increased levels of complex TF/VII, PAI-1, platelet activation as well as decreased content of SIRT1 and SIRT3. Front Physiol. 2018;9:1623.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Dou L, Jourde-Chiche N, Faure V, Cerini C, Berland Y, Dignat-George F, Brunet P. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J Thromb Haemost. 2007;5(6):1302–8.

    Article  CAS  PubMed  Google Scholar 

  206. Stinghen AE, Chillon JM, Massy ZA, Boullier A. Differential effects of indoxyl sulfate and inorganic phosphate in a murine cerebral endothelial cell line (bEnd.3). Toxins (Basel). 2014;6(6):1742–60.

    Article  CAS  PubMed  Google Scholar 

  207. Tumur Z, Shimizu H, Enomoto A, Miyazaki H, Niwa T. Indoxyl sulfate upregulates expression of ICAM-1 and MCP-1 by oxidative stress-induced NF-kappaB activation. Am J Nephrol. 2010;31(5):435–41.

    Article  CAS  PubMed  Google Scholar 

  208. Yu M, Kim YJ, Kang DH. Indoxyl sulfate-induced endothelial dysfunction in patients with chronic kidney disease via an induction of oxidative stress. Clin J Am Soc Nephrol. 2011;6(1):30–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Kaminski TW, Pawlak K, Karbowska M, Mysliwiec M, Pawlak D. Indoxyl sulfate: the uremic toxin linking hemostatic system disturbances with the prevalence of cardiovascular disease in patients with chronic kidney disease. BMC Nephrol. 2017;18(1):35

    Article  PubMed  PubMed Central  Google Scholar 

  210. Hung SC, Kuo KL, Wu CC, Tarng DC. Indoxyl sulfate: a novel cardiovascular risk factor in chronic kidney disease. J Am Heart Assoc. 2017;6(2):e005022.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Lucas S, Omata Y, Hofmann J, Böttcher M, Iljazovic A, Sarter K, Albrecht O, Schulz O, Krishnacoumar B, Krönke G, Herrmann M, Mougiakakos D, Strowig T, Schett G, Zaiss MM. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun. 2018;9(1):55.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Blais A, Rochefort GY, Moreau M, Calvez J, Wu X, Matsumoto H, Blachier F. Monosodium glutamate supplementation improves bone status in mice under moderate protein restriction. JBMR Plus. 2019;3(10):e10224.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Lee WC, Guntur AR, Long F, Rosen CJ. Energy metabolism of the osteoblast: implications for osteoporosis. Endocr Rev. 2017;38(3):255–66.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, Kobayashi Y, Furuya Y, Yasuda H, Fukuda C, Tsuda E. Osteoblast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 2021;39(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  215. Chalvon-Demersay T, Blachier F, Tomé D, Blais A. Animal models for the study of the relationship between diet and obesity: a focus on dietary protein and estrogen deficiency. Front Nutr. 2017;4:5.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Karlamangla AS, Burnett-Bowie SM, Crandall CJ. Bone health during the menopause transition and beyond. Obstet Gynecol Clin N Am. 2018;45(4):695–708.

    Article  Google Scholar 

  217. Yan J, Herzog JW, Tsang K, Brennan CA, Bower MA, Garrett WS, Sartor BR, Aliprantis AO, Charles JF. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci U S A. 2016;113(47):E7554–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Fulzele K, Clemens TL. Novel functions for insulin in bone. Bone. 2012;50(2):452–6.

    Article  CAS  PubMed  Google Scholar 

  219. Yakar S, Courtland HW, Clemmons D. IGF-1 and bone: new discoveries from mouse models. J Bone Miner Res. 2010;25(12):2543–52.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu JL, Ooi GT, Setser J, Frystyk J, Boisclair YR, LeRoith D. Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest. 2002;110(6):771–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Zhou T, Wang M, Ma H, Li X, Heianza Y, Qi L. Dietary fiber, genetic variations of gut microbiota-derived short-chain fatty acids, and bone health in UK biobank. J Clin Endocrinol Metab. 2021;106(1):201–10.

    Article  PubMed  Google Scholar 

  222. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Petterson S. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A. 2011;108(7):3047–52.

    Article  PubMed  Google Scholar 

  223. Ogbonnaya ES, Clarke G, Shanahan F, Dinan TG, Cryan JF, O’Leary OF. Adult hippocampal neurogenesis is regulated by the microbiome. Biol Psychiatry. 2015;78(4):e7–9.

    Article  PubMed  Google Scholar 

  224. Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous system in health and disease. Nat Neurosci. 2017;20(2):145–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. De Palma G, Lynch MD, Lu J, Dang VT, Deng Y, Jury J, Umeh G, Miranda PM, Pigrau Pastor M, Sidani S, Pinto Sanchez MI, Philip V, McLean PG, Hagelsieb MG, Surette MG, Bergonzelli GE, Verdu EF, Britz-McKibbin P, Neufeld JD, Collins SM, Bercik P. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci Transl Med. 2017;9(379):eaaf6397.

    Article  PubMed  Google Scholar 

  226. Foster JA, McVey Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36(5):305–12.

    Article  CAS  PubMed  Google Scholar 

  227. Kelly JR, Borre Y, O’Brien C, Patterson E, El Aidy S, Deane J, Kennedy PJ, Beers S, Scott K, Moloney G, Hoban AE, Scott L, Fitzgerald P, Ross P, Stanton C, Clarke G, Cryan JF, Dinan TG. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatry. 2016;82:109–18.

    Google Scholar 

  228. Stilling RM, Dinan TG, Cryan JF. Microbial genes, brain and behavior -epigenetic regulation of the gut-brain axis. Genes Brain Behav. 2014;13(1):69–86.

    Article  CAS  PubMed  Google Scholar 

  229. Zeng L, Zeng B, Wang H, Li B, Huo R, Zheng P, Zhang X, Du X, Liu M, Fang Z, Xu X, Zhou C, Chen J, Li W, Guo J, Wei H, Xie P. Microbiota modulates behavior and protein kinase C mediated cAMP response element-binding protein signaling. Sci Rep. 2016;6:29998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Srandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693(B):128–33.

    Article  Google Scholar 

  231. Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009;6(5):306–14.

    Article  CAS  PubMed  Google Scholar 

  232. Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB. Bacteria-host communication: the language of hormones. Proc Natl Acad Sci U S A. 2003;100(15):8951–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Hughes DT, Sperandio V. Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol. 2008;6(2):111–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Cogan TA, Thomas AO, Rees LEN, Taylor AH, Jepson MA, Williams PH, Ketley J, Humphrey TJ. Norepinephrine increases the pathogenic potential of Campylobacter jejuni. Gut. 2007;56(8):1060–5.

    Article  CAS  PubMed  Google Scholar 

  235. Lyte M. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog. 2013;9(11):e1003726.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Strandwitz P, Kim KH, Terekhova D, Liu JK, Sharma A, Levering J, McDonald D, Dietrich D, Ramadhar TR, Lekbua A, Mroue N, Liston C, Stewart EJ, Dubin MJ, Zengler K, Knight R, Gilbert JA, Clardy J, Lewis K. GABA-modulating bacteria of the human gut microbiota. Nat Microbiol. 2019;4(3):396–403.

    Article  CAS  PubMed  Google Scholar 

  237. Lyte M. The role of microbial endocrinology in infectious disease. J Endocrinol. 1993;137(3):343–5.

    Article  CAS  PubMed  Google Scholar 

  238. Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Goluveba AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O’Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The microbiota-gut-brain-axis. Physiol Rev. 2019;99(4):1877–2013.

    Article  CAS  PubMed  Google Scholar 

  239. Forsythe P, Kunze WA. Voices from within: gut microbes and the CNS. Cell Mol Life Sci. 2013;70(1):55–69.

    Article  CAS  PubMed  Google Scholar 

  240. Ornelas A, Dowdell AS, Scott Lee J, Colgan SP. Microbial metabolite regulation of epithelial cell-cell interactions and barrier function. Cell. 2022;11(6):944.

    Article  CAS  Google Scholar 

  241. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013;19(12):1584–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2(1):3–14.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Najjar S, Pearlman DM, Devinsky O, Najjar A, Zagzag D. Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence. J Neuroinflammation. 2013;10:142.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck MP, Fenart L. Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov. 2007;6(8):650–61.

    Article  CAS  PubMed  Google Scholar 

  245. Hashimoto Y, Campbell M. Tight junction modulation at the blood-brain barrier: current and future perspectives. Biochim Biophys Acta. 2020;1862(9):183298.

    Article  CAS  Google Scholar 

  246. Hawkins RA, O’Kane RL, Simpson IA, Vina JR. Structure of the blood-brain barrier and its role in the transport of amino acids. J Nutr. 2006;136(1S):218S–26S.

    Article  CAS  PubMed  Google Scholar 

  247. Ohtsuki S, Terasaki T. Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res. 2007;24(9):1745–58.

    Article  CAS  PubMed  Google Scholar 

  248. Patching SG. Glucose transporters at the blood-brain barrier: function, regulation and gateways for drug delivery. Mol Neurobiol. 2017;54(2):1046–77.

    Article  CAS  PubMed  Google Scholar 

  249. Banks WA. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol. 2009;9(S1):S3.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Lochhead JJ, Yang J, Ronaldson PT, Davis TP. Structure, function, and regulation of the blood-brain barrier tight junction in central nervous system disorders. Front Physiol. 2020;11:914.

    Article  PubMed  PubMed Central  Google Scholar 

  251. Lockwood AH, Finn RD, Campbell JA, Richman TB. Factors that affect the uptake of ammonia by the brain: the blood-brain pH gradient. Brain Res. 1980;181(2):259–66.

    Article  CAS  PubMed  Google Scholar 

  252. Skowronska M, Albrecht J. Alterations of blood brain barrier function in hyperammonemia: an overview. Neurotox Res. 2012;21(2):236–44.

    Article  CAS  PubMed  Google Scholar 

  253. Kiecker C. The origins of circumventricular organs. J Anat. 2018;232(4):540–53.

    Article  PubMed  Google Scholar 

  254. Guerra MM, Gonzalez C, Caprile T, Jara M, Vio K, Munoz RI, Rodriguez S, Rodriguez EM. Understanding how the subcommissural organ and other periventricular secretory structures contribute via the cerebrospinal fluid to neurogenesis. Front Cell Neurosci. 2015;9:480.

    Article  PubMed  PubMed Central  Google Scholar 

  255. Joly JS, Osorio J, Alunni A, Auger H, Kano S, Rétaux S. Windows of the brain: towards a developmental biology of circumventricular and other neurohemal organs. Semin Cell Dev Biol. 2007;18(4):512–24.

    Article  PubMed  Google Scholar 

  256. Kaur C, Ling EA. The circumventricular organs. Histol Histopathol. 2017;32(9):879–92.

    PubMed  Google Scholar 

  257. Price CJ, Hoyda TD, Ferguson AV. The area postrema: a brain monitor and integrator of systemic autonomic state. Neuroscientist. 2008;14(2):182–94.

    Article  PubMed  Google Scholar 

  258. Miller AD, Leslie RA. The area postrema and vomiting. Front Neuroendocrinol. 1994;15(4):301–20.

    Article  CAS  PubMed  Google Scholar 

  259. Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest. 2015;125(3):926–38.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Uzbay T. Germ-free animal experiments in the gut microbiota studies. Curr Opin Pharmacol. 2019;49:6–10.

    Article  CAS  PubMed  Google Scholar 

  261. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C, Koga Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558(1):263–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Swartz TD, Duca FA, de Wouters T, Sakar Y, Covasa M. Up-regulation of intestinal type 1 taste receptor 3 and sodium glucose luminal trasporter-1 expression and increased sucrose intake in mice lacking gut microbiota. Br J Nutr. 2012;107(5):621–30.

    Article  CAS  PubMed  Google Scholar 

  263. Crumeyrolle-Arias M, Jaglin M, Bruneau A, Vancassel S, Cardona A, Daugé V, Naudon L, Rabot S. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology. 2014;42:207–17.

    Article  CAS  PubMed  Google Scholar 

  264. Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF. Microbiota is essential for social development in the mouse. Mol Psychiatry. 2014;19(2):146–8.

    Article  CAS  PubMed  Google Scholar 

  265. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 2011;23(3):255–264,e119.

    Article  CAS  PubMed  Google Scholar 

  267. Ngo DH, Vo TS. An updated review on pharmaceutical properties of gamma-aminobutyric acid. Molecules. 2019;24(15):2678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Wagner S, Castel M, Gainer H, Yarom Y. GABA in the mammalian suprachiamastic nucleus and its role in diurnal rhythmicity. Nature. 1997;387(6633):598–603.

    Article  CAS  PubMed  Google Scholar 

  269. Benson C, Mifflin K, Kerr B, Jesudasan SJ, Dursun S, Baker G. Biogenic amines and the amino acids GABA and glutamate: relationships with pain and depression. Mod Trends Pharmacopsychiatry. 2015;30:67–79.

    Article  PubMed  Google Scholar 

  270. Nuss P. Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr Dis Treat. 2015;11:165–75.

    PubMed  PubMed Central  Google Scholar 

  271. Hyland NP, Cryan JF. A gut feeling about GABA: focus on GABA(B) receptors. Front Pharmacol. 2010;1:124.

    Article  PubMed  PubMed Central  Google Scholar 

  272. Karatzas KA, Brennan O, Heavin S, Morrissey J, O’Bryne CP. Intracellular accumulation of high levels of gamma-aminobutyrate by listeria monocytogenes 10403S in response to low pH: uncoupling of gamma-aminobutyrate synthesis from efflux in a chemically defined medium. Appl Environ Microbiol. 2010;76(11):3529–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Nacher A, Polache A, Moll-Navarro MJ, Pla-Delfina JM, Merino M. Intestinal absorption pathway of gamma-aminobutyric acid in small intestine. Biopharm Drug Dispos. 1994;15(5):359–71.

    Article  CAS  PubMed  Google Scholar 

  274. van Berlo CL, de Jonge HR, van den Bogaard AE, van Eijk HM, Janssen MA, Soeters PB. Gamma-aminobutyric acid production in small and large intestine of normal and germ-free Wistar rats. Influence of food intake and intestinal flora. Gastroenterology. 1987;93(3):472–9.

    Article  PubMed  Google Scholar 

  275. Van Gelder NM, Elliott KA. Disposition of gamma-aminobutyric acid administered to mammals. J Neurochem. 1958;3(2):139–43.

    Article  PubMed  Google Scholar 

  276. Todd N, Zhang Y, Power C, Becerra L, Borsook D, Livingstone M, McDannold N. Modulation of brain function by targeted delivery of GABA through the disrupted blood-brain barrier. NeuroImage. 2019;189:267–75.

    Article  CAS  PubMed  Google Scholar 

  277. Aston-Jones G, Waterhouse B. Locus coeruleus: from global projection system to adaptive regulation of behavior. Brain Res. 2016;1645:75–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Saboory E, Ghasemi M, Mehranfard N. Norepinephrine, neurodevelopment and bahavior. Neurochem Int. 2020;135:104706.

    Article  CAS  PubMed  Google Scholar 

  279. Holland N, Robbins TW, Rowe JB. The role of noradrenaline in cognition and cognitive disorders. Brain. 2021;144(8):2243–56.

    Article  PubMed  PubMed Central  Google Scholar 

  280. MacKenzie ET, McCullough J, O’Kean M, Pickard JD, Harper AM. Cerebral circulation and norepinephrine: relevance of the blood-brain barrier. Am J Phys. 1976;231(2):483–8.

    Article  CAS  Google Scholar 

  281. Chiueh CC, Sun CL, Kopin IJ, Fredericks WR, Rapoport SI. Entry of (3H)norepinephrine, (125I)albumin and Evans blue from blood into brain following unilateral osmotic opening of the blood-brain barrier. Brain Res. 1978;145(2):291–301.

    Article  CAS  PubMed  Google Scholar 

  282. Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobiol. 2019;39(1):31–59.

    Article  PubMed  Google Scholar 

  283. Berke JD. What dopamine mean? Nat Neurosci. 2018;21(6):787–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Claus H, Decker H. Bacterial tyrosinases. Syst Appl Microbiol. 2006;29(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  285. Qu M, Lin Q, Huang L, Fu Y, Wang L, He S, Fu Y, Yang S, Zhang Z, Zhang L, Sun X. Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson’s disease. J Control Release. 2018;287:156–66.

    Article  CAS  PubMed  Google Scholar 

  286. McCutcheon RA, Abi-Dargham A, Howes OD. Schizophrenia, dopamine and the striatum: from biology to symptoms. Trends Neurosci. 2019;42(3):205–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Baronio D, Gonchoroski T, Castro K, Zanatta G, Gottfried C, Riesgo R. Histaminergic system in brain disorders: lessons from the translational approach and future perspectives. Ann General Psychiatry. 2014;13(1):34.

    Article  Google Scholar 

  288. Church MK. Allergy, histamine and antihistamines. Handb Exp Pharmacol. 2017;241:321–31.

    Article  CAS  PubMed  Google Scholar 

  289. Maintz L, Novak N. Histamine and histamine intolerance. Am J Clin Nutr. 2007;85(5):1185–96.

    Article  CAS  PubMed  Google Scholar 

  290. Nomura H, Shimizume R, Ikegaya Y. Histamine: a key neuromodulator of memory consolidation and retrieval. Curr Top Behav Neurosci. 2022;59:329–53.

    Article  PubMed  Google Scholar 

  291. Neuhuber W, Wörl J. Monoamines in the enteric nervous system. Histochem Cell Biol. 2018;150(6):703–9.

    Article  CAS  PubMed  Google Scholar 

  292. Colombo FM, Cattaneo P, Confalonieri E, Bernardi C. Histamine food poisonings: a systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2018;58(7):1131–51.

    Article  CAS  PubMed  Google Scholar 

  293. Domingos-Lopes MFP, Stanton C, Ross RP, Silva CCG. Histamine and cholesterol lowering abilities of lactic acid bacteria isolated from artisanal Pico cheese. J Appl Microbiol. 2020;29(6):1428–40.

    Article  Google Scholar 

  294. Alstadhaug KB. Histamine in migraine and brain. Headache. 2014;54(2):246–559.

    Article  PubMed  Google Scholar 

  295. Oleskin AV, Shenderov BA, Rogovsky VS. Role of neurochemicals in the interactions between the microbiota and the immune and the nervous system of the host organism. Probiotics Antimicrob Proteins. 2017;9(3):215–34.

    Article  CAS  PubMed  Google Scholar 

  296. El-Merahbi R, Löffler M, Mayer A, Sumara G. The roles of peripheral serotonin in metabolic homeostasis. FEBS Lett. 2015;589(15):1728–34.

    Article  CAS  PubMed  Google Scholar 

  297. O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Bahav Brain Res. 2015;277:32–48.

    Article  Google Scholar 

  298. Gershon MD. 5-hydroxytryptamin (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes. 2013;20(1):14–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Bulat M, Supek Z. The penetration of 5-hydroxytryptamine through the blood-brain barrier. J Neurochem. 1967;14(3):265–71.

    Article  CAS  PubMed  Google Scholar 

  300. Winkler T, Sharma HS, Stalberg E, Olsson Y, Dey PK. Impairment of blood-brain barrier function by serotonine induces desynchronization of spontaneous cerebral cortical activity: experimental observations in the anaesthetized rat. Neuroscience. 1995;68(4):1097–104.

    Article  CAS  PubMed  Google Scholar 

  301. Raybould HE, Cooke HJ, Christofi FL. Sensory mechanisms: transmitters, modulators and reflexes. Neurogastroenterol Motil. 2004;16(S1):60–3.

    Article  PubMed  Google Scholar 

  302. O’Hara JR, Ho W, Linden DR, Mawe GM, Sharkey KA. Enteroendocrine cells and 5-HT availability are altered in mucosa of Guinea pigs with TNBS ileitis. Am J Phys. 2004;287(5):G998–G1007.

    Google Scholar 

  303. Gao K, Mu CL, Farzi A, Zhu WY. Tryptophan metabolism: a link between the gut microbiota and brain. Adv Nutr. 2020;11(3):709–23.

    Article  PubMed  Google Scholar 

  304. Williams BB, Van Benschoten AH, Cimermancic P, Donia MS, Zimmermann M, Taketani M, Ishihara A, Kashyap PC, Fraser JS, Fischbach MA. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe. 2014;16(4):495–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Jones RS. Tryptamine: a neuromodulator or neurotransmitter in mammalian brain? Prog Neurobiol. 1982;19(1–2):117–39.

    Article  CAS  PubMed  Google Scholar 

  306. Vitale AA, Pomilio AB, Canellas CO, Vitale MG, Putz EM, Ciprian-Ollivier JJ. In vivo long-term kinetics of radiolabeled n,n-dimethyltryptamine and tryptamine. J Nucl Med. 2011;52(6):970–7.

    Article  CAS  PubMed  Google Scholar 

  307. Davila AM, Blachier F, Gotteland M, Andriamihaja M, Benetti PH, Sanz Y, Tomé D. Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res. 2013;68(1):95–107.

    Article  CAS  PubMed  Google Scholar 

  308. Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 2019;7(1):91.

    Article  PubMed  PubMed Central  Google Scholar 

  309. Eklou-Lawson M, Bernard F, Neveux N, Chaumontet C, Bos C, Davila-Gay AM, Tomé D, Cynober L, Blachier F. Colonic luminal ammonia and portal blood L-glutamine and L-arginine concentrations: a possible link between colon mucosa and liver ureagenesis. Amino Acids. 2009;37(4):751–60.

    Article  CAS  PubMed  Google Scholar 

  310. Ashy AA, Salleh M, Ardawi M. Glucose, glutamine, and ketone-body metabolism in human enterocytes. Metabolism. 1988;37(6):602–9.

    Article  CAS  PubMed  Google Scholar 

  311. Walker V. Ammonia metabolism and hyperammonemic disorders. Av Clin Chem. 2014;67:73–150.

    Article  CAS  Google Scholar 

  312. Hazell AS, Butterworth RF. Hepatic encephalopathy: an update of pathophysiologic mechanisms. Proc Soc Exp Biol Med. 1999;222(2):99–112.

    Article  CAS  PubMed  Google Scholar 

  313. Frieg B, Görg B, Gohlke H, Häussinger D. Glutamine synthetase as a central element in hepatic glutamine and ammonia metabolism: novel aspects. Biol Chem. 2021;402(9):1063–72.

    Article  CAS  PubMed  Google Scholar 

  314. Fiati Kenston SS, Song X, Li Z, Zhao J. Mechanistic insights, diagnosis, and treatment of ammonia-induced hepatic encephalopathy. J Gastroenterol Hepatol. 2019;34(1):31–9.

    Article  PubMed  Google Scholar 

  315. Lee GH. Hepatic encephalopathy in acute-on-chronic liver failure. Hepatol Int. 2015;9(4):520–6.

    Article  PubMed  Google Scholar 

  316. Butterworth RF. Pathogenesis of hepatic encephalopathy and brain edema in acute liver failure. J Clin Exp Hepatol. 2015;5(S1):S96–S103.

    Article  PubMed  Google Scholar 

  317. Atterbury CE, Maddrey WC, Conn HO. Neomycin-sorbitol and lactulose in the treatment of acute portal-systemic encephalopathy. A controlled, double-blind clinical trial. Am J Dig Dis. 1978;23(5):398–406.

    Article  CAS  PubMed  Google Scholar 

  318. Conn HO, Leevy CM, Vlahcevic ZR, Rodgers JB, Maddrey WC, Seeff L, Levy LL. Comparison of lactulose and neomycin in the treatment of chronic portal-systemic encephalopathy. A double blind controlled trial. Gastroenterology. 1977;72(4P1):573–83.

    Article  CAS  PubMed  Google Scholar 

  319. Als-Nielsen B, Gluud LL, Gluud C. Non-absorbable disaccharides for hepatic encephalopathy: systematic review of randomized trials. BMJ. 2004;328(7447):1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Cordoba J, Lopez-Hellin J, Planas M, Sabin P, Sanpedro F, Castro F, Esteban R, Guardia J. Normal protein diet for episodic hepatic encephalopathy: results of a randomized study. J Hepatol. 2004;41(1):38–43.

    Article  CAS  PubMed  Google Scholar 

  321. Rose C, Michalak A, Rao KV, Quack G, Kircheis G, Butterworth RF. L-ornithine L-aspartate lowers plasma and cerebrospinal fluid ammonia and prevents brain edema in rats with acute liver failure. Hepatology. 1999;30(3):636–40.

    Article  CAS  PubMed  Google Scholar 

  322. Bai M, Yang Z, Qi X, Fan D, Han G. L-ornithine-L-aspartate for hepatic encephalopathy in patients with cirrhosis: a meta-analysis of randomized controlled trials. J Gastroenterol Hepatol. 2013;28(5):783–92.

    Article  CAS  PubMed  Google Scholar 

  323. Kircheis G, Nilius R, Held C, Berndt H, Buchner M, Görtelmeyer R, Hendricks R, Krüger B, Meister H, Otto HJ, Rink C, Rösch W, Stauch S. Therapeutic efficacy of L-ornithine-L-aspartate infusions in patients with cirrhosis and hepatic encephalopathy: results of a placebo-controlled, double-blind study. Hepatology. 1997;25(6):1351–60.

    Article  CAS  PubMed  Google Scholar 

  324. Shawcross D, Jalan R. Dispelling myths in the treatment of hepatic encephalopathy. Lancet. 2005;365(9457):431–3.

    Article  PubMed  Google Scholar 

  325. Sharma SR, Gonda X, Tarazi FI. Autism spectrum disorder: classification, diagnosis and therapy. Pharmacol Ther. 2018;190:91–104.

    Article  CAS  PubMed  Google Scholar 

  326. Varghese M, Keshay N, Jacot-Descombes S, Warda T, Wicinski B, Dickstein DL, Harony-Nicolas H, De Rubeis H, Drapeau E, Buxbaum JD, Hof PR. Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol. 2017;134(4):537–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Masi A, DeMayo MM, Glozier N, Guastella AJ. An overview of autism spectrum disorder, heterogeneity and treatment options. Neurosci Bull. 2017;33(2):183–93.

    Article  PubMed  PubMed Central  Google Scholar 

  328. Guo H, Wang T, Wu H, Long M, Coe BP, Li H, Xun G, Ou J, Chen B, Duan G, Bai T, Zhao N, Shen Y, Li Y, Wang Y, Zhang Y, Baker C, Liu Y, Pang N, Huang L, Han L, Jia X, Liu C, Ni H, Yang X, Xia L, Chen J, Shen L, Li Y, Zhao R, Zhao W, Peng J, Pan Q, Long Z, Su W, Tan J, Du X, Ke X, Yao M, Hu Z, Zou X, Zhao J, Bernier RA, Eichler EE, Xia K. Inherited and multiple de novo mutations in autism/developmental delay risk genes suggest a multifactorial model. Mol Autism. 2018;9:64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, Miller J, Fedele A, Collins J, Smith K, Lotspeich L, Croen LA, Ozonoff S, Lajonchere C, Grether JK, Risch N. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry. 2011;68(11):1095–102.

    Article  PubMed  PubMed Central  Google Scholar 

  330. Kim JY, Son MJ, Son CY, Radua J, Eisenhut M, Gressier F, Koyanagi A, Carvalho AF, Stubbs B, Solmi M, Rais TB, Lee KH, Kronbichler A, Dragioti E, Shin JI, Fusar-Poli P. Environmental risk factors and biomarkers for autism spectrum disorder: an umbrella review of the evidence. Lancet Psychiatry. 2019;6:590–600.

    Article  PubMed  Google Scholar 

  331. Hertz-Picciotto I, Schmidt RJ, Krakowiak P. Understanding environmental contributions to autism: causal concepts and the state of science. Autism Res. 2018;11:554–86.

    Article  PubMed  Google Scholar 

  332. Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA. Elevated fecal short-chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig Dis Sci. 2012;57(8):2096–102.

    Article  CAS  PubMed  Google Scholar 

  333. Al-Owen M, Kaya N, Al-Shamrani H, Al-Bakheet A, Qari A, Al-Muaigl S, Ghaziuddin M. Autism spectrum disorder in a child with propionic acidemia. JIMD Rep. 2013;7:63–6.

    Article  Google Scholar 

  334. Altieri L, Neri C, Sacco R, Curatolo P, Benvenuto A, Muratori F, Santocchi E, Bravaccio C, Lenti C, Saccani M, Rigardetto R, Gandione M, Urbani A, Persico AM. Urinary p-cresol is elevated in small children with severe autism spectrum disorder. Biomarkers. 2011;16(3):252–60.

    Article  CAS  PubMed  Google Scholar 

  335. De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A, Serrazzanetti DI, Cristofori F, Guerzoni ME, Gobbetti M, Francavilla R. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One. 2013;8(10):e76993.

    Article  PubMed  PubMed Central  Google Scholar 

  336. Gabriele S, Sacco R, Altieri L, Neri C, Urbani A, Bravaccio C, Riccio MP, Lovene MR, Bombace F, De Magistris L, Persico AM. Slow intestinal transit contributes to elevate urinary p-cresol level in Italian autistic children. Autism Res. 2016;9(7):752–9.

    Article  PubMed  Google Scholar 

  337. Gabriele S, Sacco R, Cerullo S, Neri C, Urbani A, Tripi G, Malvy J, Barthelemy C, Bonnet-Brihault F, Persico AM. Urinary p-cresol is elevated in young French children with autism spectrum disorder: a replication study. Biomarkers. 2014;19(6):463–70.

    Article  CAS  PubMed  Google Scholar 

  338. Kang DW, Ilhan ZE, Isern NG, Hoyt DW, Howsmon DP, Shaffer M, Lozupone CA, Hahn J, Adams JB, Krajmalnik-Brown R. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe. 2018;49:121–31.

    Article  CAS  PubMed  Google Scholar 

  339. Macfabe DF. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microb Ecol Health Dis. 2012;23:1.

    Google Scholar 

  340. Shaw W. Increased urinary excretion of a 3-(3-hydroxyphenyl)-3-hydroxypropionic acid (HPHPA), an abnormal phenylalanine metabolite of Clostridia spp. In the gastrointestinal tract, in urine samples from patients with autism and schizophrenia. Nutr Neurosci. 2010;13(3):135–43.

    Article  CAS  PubMed  Google Scholar 

  341. Sanctuary MR, Kain JN, Augkustsiri K, German JB. Dietary consideration in autism spectrum disorders: the potential role of protein digestion and microbial putrefaction in the gut-brain axis. Front Nutr. 2018;5:40.

    Article  PubMed  PubMed Central  Google Scholar 

  342. Bermudez-Martin P, Becker JA, Caramello N, Fernandez SP, Costa-Campos R, Canaguier J, Barbosa S, Martinez-Gili L, Myridakis A, Dumas ME, Bruneau A, Cherbuy C, Langella P, Callebert J, Launay JM, Chabry J, Barik J, Le Merrer J, Glaichenhaus N, Davidovic L. The microbial metabolite p-cresol induces autistic-like behaviors in mice by remodeling the gut microbiota. Microbiome. 2021;9(1):157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Careaga M, Schwartzer J, Ashwood P. Inflammatory profiles in the BTBR mouse: how relevant are they to autism spectrum disorders? Brain Behav Immun. 2015;43:11–6.

    Article  CAS  PubMed  Google Scholar 

  344. Silverman JL, Yang M, Lord C, Crawley JN. Behavioural phenotyping assays for mouse model of autism. Nat Rev Neurosci. 2010;11(7):490–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Pascucci T, Colamartino M, Fiori E, Sacco R, Coviello A, Ventura R, Puglisi-Allegras S, Turriziani L, Persico AM. p-cresol alters brain dopamine metabolism and exacerbates autism-like behaviors in the BTBR mouse. Brain Sci. 2020;10(4):233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Persico AM, Napolioni V. Urinary p-cresol in autism spectrum disorder. Neurotoxicol Teratol. 2013;36:82–90.

    Article  CAS  PubMed  Google Scholar 

  347. Buie T, Campbell DB, Fuchs GJ 3rd, Furuta GT, Levy J, Vandewater J, Whitaker AH, Atkins D, Bauman DL, Beaudet AL, Carr EG, Gershon ED, Hyman SL, Jirapinyo P, Jyonouchi H, Kooros K, Kushak R, Levitt P, Levy SE, Lewis JD, Murray KF, Natowicz MR, Sabra A, Wershil BK, Weston SC, Zeltzer L, Winter H. Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics. 2010;125(S1):S1–S18.

    Article  PubMed  Google Scholar 

  348. McElhanon BO, McCracken C, Karpen S, Sharp WG. Gastrointestinal symptoms in autism spectrum disorders: a mata-analysis. Pediatrics. 2014;133(5):872–83.

    Article  PubMed  Google Scholar 

  349. D’Eufemia P, Celli M, Finocchiaro R, Pacifico L, Viozzi L, Zaccagnini M, Cardi E, Giardini O. Abnormal intestinal permeability in children with autism. Acta Pediatr. 1996;85(9):1076–9.

    Article  Google Scholar 

  350. Calderon-Guzman D, Hernandez-Islas JL, Espitia Vasquez IR, Barragan-Mejia G, Hernandez-Garcia E, Del Angel DS, Juarez-Olguin H. Effects of toluene and cresols on Na+,K+-ATPase and serotonin in rat brain. Regul Toxicol Pharmacol. 2005;41(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  351. Goodhart PJ, DeWolf WE Jr, Kruse LI. Mechanisms-based inactivation of dopamine beta-hydroxylase by p-cresol and related alkylphenols. Biochemistry. 1987;26(9):2576–83.

    Article  CAS  PubMed  Google Scholar 

  352. Tevzadze G, Zhuravliova E, Barbakadze T, Shanshiashvili L, Dzneladze D, Nanobashvili Z, Lordkipanidze T, Mikeladze D. Gut neurotoxin p-cresol induces differential expression of GLUN2B and GLUN2A subunits of the NMDA receptor in the hippocampus and nucleus accumbens in healthy and audiogenic seizure-prone rats. AIMS Neurosci. 2020;7(1):30–42.

    Article  PubMed  PubMed Central  Google Scholar 

  353. Yamamoto H, Hagino Y, Kasai S, Ikeda K. Specific roles of NMDA receptor subunits in mental disorders. Curr Mol Med. 2015;15:193–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Zhou Q, Sheng M. NMDA receptors in nervous system diseases. Neuropharmacology. 2013;74:69–75.

    Article  CAS  PubMed  Google Scholar 

  355. Gacias M, Gaspari S, Santos PMG, Tamburini S, Andrade M, Zhang F, Shen N, Tolstikov V, Kiebish MA, Dupree JL, Zachariou V, Clemente JC, Casaccia P. Microbiota-driven transcriptional changes in prefrontal cortex override differences in social behavior. elife. 2016;5:e13442.

    Article  PubMed  PubMed Central  Google Scholar 

  356. Bergles DE, Richardson WD. Oligodendrocyte development and plasticity. Cold Spring Harb Perspect Biol. 2015;8(2):e020453.

    Article  Google Scholar 

  357. Tennoune N, Andriamihaja M, Blachier F. Production of indole and indole-related compounds by the intestinal microbiota and consequences for the host: the good, the bad, and the ugly. Microorganisms. 2022;10(5):930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Jaglin M, Rhimi M, Philippe C, Pons N, Bruneau A, Goustard B, Dauge V, Maguin E, Naudon L, Rabot S. Indole, a signaling molecule produced by the gut microbiota, negatively impacts emotional behaviors in rats. Front Neurosci. 2018;12:216.

    Article  PubMed  PubMed Central  Google Scholar 

  359. Mir HD, Milman A, Monnoye M, Douard V, Philippe C, Aubert A, Castanon N, Vancassel S, Guerineau NC, Naudon L, Rabot S. The gut microbiota metabolite indole increases emotional responses and adrenal medulla activity in chronically stressed male mice. Psychoneuroendocrinology. 2020;119:104750.

    Article  CAS  PubMed  Google Scholar 

  360. Riggio O, Mannaioni G, Ridola L, Angeloni S, Merli M, Carla V, Salvatori FM, Moroni F. Peripheral and splanchnic indole and oxindole levels in cirrhotic patients: a study on the pathophysiology of hepatic encephalopathy. Am J Gastroenterol. 2010;105(6):1374–81.

    Article  CAS  PubMed  Google Scholar 

  361. Philippe C, Szabo de Edelenyi F, Naudon L, Druesne-Pecollo N, Hercberg S, Kesse-Guyot E, Latino-Martel P, Galan P, Rabot S. Relation between mood and the host-microbiome co-metabolite 3-indoxylsulfate: results from the observational prospective NutriNet-Sante study. Microorganisms. 2021;9(4):716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L, Chao CC, Patel B, Yan R, Blain M, Alvarez JI, Kébir H, Anandasabapathy N, Izquierdo G, Jung S, Obholzer N, Pochet N, Clish CB, Prinz M, Prat A, Antel J, Quintana FJ. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 2016;22(6):586–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Chyan YJ, Poeggeler B, Omar RA, Chain DG, Frangione B, Ghiso J, Pappolla MA. Potent neuroprotective properties against the Alzheimer beta-amyloid by an endogenous melatonin-related indole structure, indole-3-propionic acid. J Biol Chem. 1999;274(31):21937–42.

    Article  CAS  PubMed  Google Scholar 

  364. Medvedev A, Buneeva O, Glover V. Biological targets for isatin and its analogues: implications for therapy. Biologics. 2007;1(2):151–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  365. Watkins P, Clow A, Glover V, Halket J, Przyborowska A, Sandler M. Isatin, regional distribution in rat brain and tissues. Neurochem Int. 1990;17(2):321–3.

    Article  CAS  PubMed  Google Scholar 

  366. Glover V, Halket JM, Watkins PJ, Clow A, Goodwin BL, Sandler M. Isatin: identity with the purified endogenous monoamine oxidase inhibitor tribulin. J Neurochem. 1988;51(2):656–9.

    Article  CAS  PubMed  Google Scholar 

  367. Medvedev A, Igosheva N, Crumeyrolle-Arias M, Glover V. Isatin: role in stress and anxiety. Stress. 2005;8(3):175–83.

    Article  CAS  PubMed  Google Scholar 

  368. Battacharya SK, Chakrabarti A, Sandler M, Glover V. Anxiolytic activity of intraventricularly administered atrial natriuretic peptide in the rat. Neuropsychopharmacology. 1996;15(2):199–206.

    Article  Google Scholar 

  369. Abel EL. Behavioral effects of isatin on open field activity and immobility in the forced swim test in rats. Physiol Behav. 1995;57(3):611–3.

    Article  CAS  PubMed  Google Scholar 

  370. Zhou Y, Zhao ZQ, Xie JX. Effects of isatin on rotational behavior and DA levels in caudate putamen in Parkinsonian rats. Brain Res. 2001;917(1):127–32.

    Article  CAS  PubMed  Google Scholar 

  371. Hamaue N, Minami N, Terado M, Hirafuji M, Endo T, Machida M, Hiroshige T, Ogata A, Tashiro K, Saito H, Parvez SH. Comparative study of the effects of isatin, an endogenous MAO-inhibitor, and selegiline on bradykinesia and dopamine levels in a rat model of Parkinson’s disease induced by the Japanese encephalitis virus. Neurotoxicology. 2004;25(1–2):205–13.

    Article  CAS  PubMed  Google Scholar 

  372. Yuwiler A. The effect of isatin (tribulin) on metabolism of indoles in the rat brain and pineal: in vitro and in vivo studies. Neurochem Res. 1990;15(1):95–100.

    Article  CAS  PubMed  Google Scholar 

  373. Kolla NJ, Bortolato M. The role of monoamine oxidase a in the neurobiology of aggressive, antisocial, and violent bahavior: a tale of mice and men. Prog Neurobiol. 2020;194:101875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Tan YY, Jenner P, Chen SD. Monoamine oxidase-B inhibitors for the treatment of Parkinson’s disease: past, present, and future. J Parkinsons Dis. 2022;12(2):477–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Carpenedo R, Mannaioni G, Moroni F. Oxindole, a sedative tryptophan metabolite, accumulates in blood and brain of rats with acute hepatic failure. J Neurochem. 1998;70(5):1998–2003.

    Article  CAS  PubMed  Google Scholar 

  376. Dong F, Hao F, Murray IA, Smith PB, Koo I, Tindall AM, Kris-Etherton PM, Gowda K, Amin SG, Patterson AD, Perdew GH. Intestinal microbiota-derived tryptophan metabolites are predictive of Ah receptor activity. Gut Microbes. 2020;12(1):1–24.

    Article  PubMed  Google Scholar 

  377. Mannaioni G, Carpenedo R, Pugliese AM, Corradetti R, Moroni F. Electrophysiological studies on oxindole, a neurodepressant tryptophan metabolite. Br J Pharmacol. 1998;125(8):1751–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Wang G, Korfmacher WA. Development of a biomarker assay for 3-indoxyl sulfate in mouse plasma and brain by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2009;23(13):2061–9.

    Article  CAS  PubMed  Google Scholar 

  379. Chu C, Murdock MH, Jing D, Won TH, Chung H, Kressel AM, Tsaava T, Addorisio ME, Putzel GG, Zhou L, Bessman NJ, Yang R, Moriyama S, Parkhurst CN, Li A, Meyer HC, Teng F, Chavan SS, Tracey KJ, Regev A, Schroeder FC, Lee FS, Liston C, Artis D. The microbiota regulate neuronal function and fear extinction learning. Nature. 2019;574(7779):543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  380. Chen JJ, Zhou CJ, Zheng P, Cheng K, Wang HY, Li J, Zeng L, Xie P. Differential urinary metabolites related with the severity of major depressive disorder. Behav Brain Res. 2017a;332:280–7.

    Article  CAS  PubMed  Google Scholar 

  381. Brydges CR, Fiehn O, Mayberg HS, Schreiber H, Dehkordi SM, Bhattacharyya S, Cha J, Choi KS, Craighead WE, Krishnan RR, Rush AJ, Dunlop BW, Kaddurah-Daouk R, Mood Disorders Precision Medicine Consortium. Indoxyl sulfate, a gut microbiome-derived uremic toxin, is associated with psychic anxiety and its functional magnetic resonance imaging-based neurologic signature? Sci Rep. 2021;11(1):21011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonnière L, Bernard M, van Horssen J, de Vries HE, Charron F, Prat A. The hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science. 2011;334(6063):1727–31.

    Article  CAS  PubMed  Google Scholar 

  383. Karbowska M, Hermanowicz JM, Tankiewicz-Kwedlo A, Kalaska B, Kaminski TW, Nosek K, Wisniewska RJ, Pawlak D. Neurobehavioral effects of uremic toxin-indoxyl sulfate in the rat model. Sci Rep. 2020;10(1):9483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Adesso S, Magnus T, Cuzzocrea S, Campolo M, Rissiek B, Paciello O, Autore G, Pinto A, Marzocco S. Indoxyl sulfate affects glial function increasing oxidative stress and neuroinflammation in chronic kidney disease: interactions between astrocytes and microglia. Front Pharmacol. 2017;8:370.

    Article  PubMed  PubMed Central  Google Scholar 

  385. Lin YT, Wu PH, Tsai YC, Hsu YL, Wang HY, Kuo MC, Kuo PL, Hwang SJ. Indoxyl sulfate induces apoptosis through oxidative stress and mitogen-activated protein kinase signaling pathway inhibition in human astrocytes. J Clin Med. 2019;8(2):191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blachier, F. (2023). Modification of the Bacterial Metabolites by the Host after Absorption, and Consequences for the Peripheral Tissues’ Metabolism, Physiology, and Physiopathology. In: Metabolism of Alimentary Compounds by the Intestinal Microbiota and Health. Springer, Cham. https://doi.org/10.1007/978-3-031-26322-4_5

Download citation

Publish with us

Policies and ethics