Skip to main content

Domain Generalized RPPG Network: Disentangled Feature Learning with Domain Permutation and Domain Augmentation

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13842))

Included in the following conference series:

Abstract

Remote photoplethysmography (rPPG) offers a contactless method for monitoring physiological signals from facial videos. Existing learning-based methods, although work effectively on intra-dataset scenarios, degrade severely on cross-dataset testing. In this paper, we address the cross-dataset testing as a domain generalization problem and propose a novel DG-rPPGNet to learn a domain generalized rPPG estimator. To this end, we develop a feature disentangled learning framework to disentangle rPPG, identity, and domain features from input facial videos. Next, we propose a domain permutation strategy to further constrain the disentangled rPPG features to be invariant to different domains. Finally, we design a novel adversarial domain augmentation strategy to enlarge the domain sphere of DG-rPPGNet. Our experimental results show that DG-rPPGNet outperforms other rPPG estimation methods in many cross-domain settings on UBFC-rPPG, PURE, COHFACE, and VIPL-HR datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. De Haan, G., Jeanne, V.: Robust pulse rate from chrominance-based rppg. IEEE Trans. Biomed. Eng. 60, 2878–2886 (2013)

    Article  Google Scholar 

  2. Verkruysse, W., Svaasand, L.O., Nelson, J.S.: Remote plethysmographic imaging using ambient light. Opt. Express 16, 21434–21445 (2008)

    Article  Google Scholar 

  3. Poh, M.Z., McDuff, D.J., Picard, R.W.: Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt. Express 18, 10762–10774 (2010)

    Article  Google Scholar 

  4. Wang, W., Den Brinker, A.C., Stuijk, S., De Haan, G.: Algorithmic principles of remote PPG. IEEE Trans. Biomed. Eng. 64, 1479–1491 (2016)

    Article  Google Scholar 

  5. Li, X., Chen, J., Zhao, G., Pietikainen, M.: Remote heart rate measurement from face videos under realistic situations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4264–4271 (2014)

    Google Scholar 

  6. Wang, W., Stuijk, S., De Haan, G.: A novel algorithm for remote photoplethysmography: spatial subspace rotation. IEEE Trans. Biomed. Eng. 63, 1974–1984 (2015)

    Article  Google Scholar 

  7. Poh, M.Z., McDuff, D.J., Picard, R.W.: Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Trans. Biomed. Eng. 58, 7–11 (2010)

    Article  Google Scholar 

  8. Song, R., Chen, H., Cheng, J., Li, C., Liu, Y., Chen, X.: Pulsegan: learning to generate realistic pulse waveforms in remote photoplethysmography. IEEE J. Biomed. Health Inf. 25, 1373–1384 (2021)

    Article  Google Scholar 

  9. Tsou, Y.Y., Lee, Y.A., Hsu, C.T.: Multi-task learning for simultaneous video generation and remote photoplethysmography estimation. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  10. Bousefsaf, F., Pruski, A., Maaoui, C.: 3D convolutional neural networks for remote pulse rate measurement and mapping from facial video. Appl. Sci. 9, 4364 (2019)

    Article  Google Scholar 

  11. Chen, W., McDuff, D.: Deepphys: video-based physiological measurement using convolutional attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 349–365 (2018)

    Google Scholar 

  12. Lee, E., Chen, E., Lee, C.-Y.: Meta-rPPG: remote heart rate estimation using a transductive meta-learner. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 392–409. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_24

    Chapter  Google Scholar 

  13. Lu, H., Han, H., Zhou, S.K.: Dual-gan: joint bvp and noise modeling for remote physiological measurement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12404–12413 (2021)

    Google Scholar 

  14. Niu, X., Han, H., Shan, S., Chen, X.: Synrhythm: learning a deep heart rate estimator from general to specific. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 3580–3585. IEEE (2018)

    Google Scholar 

  15. Špetlík, R., Franc, V., Matas, J.: Visual heart rate estimation with convolutional neural network. In: Proceedings of the British Machine Vision Conference, Newcastle, UK, pp. 3–6 (2018)

    Google Scholar 

  16. Tsou, Y.Y., Lee, Y.A., Hsu, C.T., Chang, S.H.: Siamese-rppg network: Remote photoplethysmography signal estimation from face videos. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp. 2066–2073 (2020)

    Google Scholar 

  17. Yu, Z., Peng, W., Li, X., Hong, X., Zhao, G.: Remote heart rate measurement from highly compressed facial videos: an end-to-end deep learning solution with video enhancement. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 151–160 (2019)

    Google Scholar 

  18. Yu, Z., Shen, Y., Shi, J., Zhao, H., Torr, P.H., Zhao, G.: Physformer: facial video-based physiological measurement with temporal difference transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4186–4196 (2022)

    Google Scholar 

  19. Bobbia, S., Macwan, R., Benezeth, Y., Mansouri, A., Dubois, J.: Unsupervised skin tissue segmentation for remote photoplethysmography. Pattern Recogn. Lett. 124, 82–90 (2019)

    Article  Google Scholar 

  20. Heusch, G., Anjos, A., Marcel, S.: A reproducible study on remote heart rate measurement. arXiv preprint arXiv:1709.00962 (2017)

  21. Stricker, R., Müller, S., Gross, H.M.: Non-contact video-based pulse rate measurement on a mobile service robot. In: The 23rd IEEE International Symposium on Robot and Human Interactive Communication, pp. 1056–1062. IEEE (2014)

    Google Scholar 

  22. Balaji, Y., Sankaranarayanan, S., Chellappa, R.: MetaReg: towards domain generalization using meta-regularization. Adv. Neural Inf. Process. Syst. 31, 1–11 (2018)

    Google Scholar 

  23. Li, Y., Yang, Y., Zhou, W., Hospedales, T.: Feature-critic networks for heterogeneous domain generalization. In: International Conference on Machine Learning, pp. 3915–3924. PMLR (2019)

    Google Scholar 

  24. Wang, Z., Luo, Y., Qiu, R., Huang, Z., Baktashmotlagh, M.: Learning to diversify for single domain generalization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 834–843 (2021)

    Google Scholar 

  25. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5542–5550 (2017)

    Google Scholar 

  26. Lin, C., Yuan, Z., Zhao, S., Sun, P., Wang, C., Cai, J.: Domain-invariant disentangled network for generalizable object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8771–8780 (2021)

    Google Scholar 

  27. Yue, X., Zhang, Y., Zhao, S., Sangiovanni-Vincentelli, A., Keutzer, K., Gong, B.: Domain randomization and pyramid consistency: simulation-to-real generalization without accessing target domain data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2100–2110 (2019)

    Google Scholar 

  28. Li, L., et al.: Progressive domain expansion network for single domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 224–233 (2021)

    Google Scholar 

  29. Zhou, K., Yang, Y., Hospedales, T., Xiang, T.: Deep domain-adversarial image generation for domain generalisation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13025–13032 (2020)

    Google Scholar 

  30. Shankar, S., Piratla, V., Chakrabarti, S., Chaudhuri, S., Jyothi, P., Sarawagi, S.: Generalizing across domains via cross-gradient training. arXiv preprint arXiv:1804.10745 (2018)

  31. Kim, D., Yoo, Y., Park, S., Kim, J., Lee, J.: Selfreg: self-supervised contrastive regularization for domain generalization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9619–9628 (2021)

    Google Scholar 

  32. Wang, G., Han, H., Shan, S., Chen, X.: Cross-domain face presentation attack detection via multi-domain disentangled representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6678–6687 (2020)

    Google Scholar 

  33. Lee, S., Cho, S., Im, S.: Dranet: disentangling representation and adaptation networks for unsupervised cross-domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15252–15261 (2021)

    Google Scholar 

  34. Niu, X., Yu, Z., Han, H., Li, X., Shan, S., Zhao, G.: Video-based remote physiological measurement via cross-verified feature disentangling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 295–310. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_18

    Chapter  Google Scholar 

  35. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  36. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  37. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180–1189. PMLR (2015)

    Google Scholar 

  38. Niu, X., Han, H., Shan, S., Chen, X.: VIPL-HR: a multi-modal database for pulse estimation from less-constrained face video. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11365, pp. 562–576. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20873-8_36

    Chapter  Google Scholar 

  39. Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2d & 3d face alignment problem? (and a dataset of 230,000 3d facial landmarks). In: International Conference on Computer Vision (2017)

    Google Scholar 

  40. McDuff, D., Blackford, E.: IPHYS: an open non-contact imaging-based physiological measurement toolbox. In: 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6521–6524. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiou-Ting Hsu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 693 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chung, WH., Hsieh, CJ., Liu, SH., Hsu, CT. (2023). Domain Generalized RPPG Network: Disentangled Feature Learning with Domain Permutation and Domain Augmentation. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13842. Springer, Cham. https://doi.org/10.1007/978-3-031-26284-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26284-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26283-8

  • Online ISBN: 978-3-031-26284-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics