Skip to main content

Propagation-Impairments Modelling and Fade-Mitigation Techniques for Earth-Satellite Links

  • Chapter
  • First Online:
Site Diversity in Satellite Communications

Abstract

To increase the capacity of satellite-communication systems and thus meet the requirements for high data rates, frequencies above the Ku band must be utilised. Today, many commercial satellite-communication systems operate in the Ka band, while in the near future some of them will operate in the higher Q/V and W bands. At high carrier frequency bands, atmospheric impairments affect the propagation of electromagnetic waves on Earth-satellite links, so those impairments must be considered in the system’s design. Precipitation (especially rain), oxygen, water vapour, clouds, and fog cause attenuation of the signal’s power; tropospheric turbulence causes rapid fluctuations of the signal’s amplitude (known as scintillation); and precipitation, especially ice and rain, causes depolarisation of the signal. Among the various atmospheric phenomena, rain is the most dominant factor affecting fading. This chapter looks at atmospheric effects and their statistics. Fade-mitigation techniques, with an emphasis on site-diversity techniques, which are mostly designed to counteract the severe impairments of the signal caused by rain, are explained and compared. The chapter concludes with a discussion of site-diversity performance, usually expressed as the Complementary Cumulative Distribution Function (CCDF) of the combined satellite-channel attenuation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.J. Ippolito, Radiowave Propagation in Satellite Communications (Springer, 2012)

    Google Scholar 

  2. R. Medhurst, Rainfall attenuation of centimeter waves: comparison of theory and measurement. IEEE Trans. Antennas Propag. 13(4), 550–564 (1965). https://doi.org/10.1109/TAP.1965.1138472

  3. R. Olsen, D. Rogers, D. Hodge, The aRb relation in the calculation of rain attenuation. IEEE Trans. Antennas Propag. 26(2), 318–329 (1978). https://doi.org/10.1109/TAP.1978.1141845

  4. L.J. Ippolito, Radiowave Propagation in Satellite Communications (Springer, Netherlands, Dordrecht, 1986). ISBN: 978-94-011-7027-7

    Google Scholar 

  5. C.I. Kourogiorgas, Channel modeling and performance evaluation of high data rate next generation wireless terrestrial and satellite communication systems. Ph.D. Thesis (National Technical University of Athens, Athens, Greece, 2015)

    Google Scholar 

  6. M.S. Assis, C.M. Einloft, A simple method for estimating rain attenuation distribution. Ann. Télécommun. 32(11), 478–480 (1977). ISSN: 1958-9395. https://doi.org/10.1007/BF03003498

  7. G.H. Bryant et al., Rain attenuation statistics from rain cell diameters and heights. Int. J. Satell. Commun. 19(3), 263–283 (2001). ISSN: 0737-2884, 1099-1247. https://doi.org/10.1002/sat.673

  8. C. Capsoni et al., Stratiform and convective rain discrimination deduced from local \(P(R)\). IEEE Trans. Antennas Propag. 54(11), 3566–3569 (2006). ISSN: 0018-926X, 1558-2221. https://doi.org/10.1109/TAP.2006.884312

  9. J.D. Kanellopoulos, S.G. Koukoulas, Analysis of the rain outage performance of route diversity systems. Radio Sci. 22(4), 549–565 (1987). https://doi.org/10.1029/RS022i004p00549

  10. A.D. Panagopoulos et al., Long-term rain attenuation probability and site diversity gain prediction formulas. IEEE Trans. Antennas Propag. 53(7), 2307–2313 (2005). https://doi.org/10.1109/TAP.2005.850762

  11. C.I. Kourogiorgas, A.D. Panagopoulos, J.D. Kanellopoulos, On the Earth-space site diversity modeling: a novel physical-mathematical outage prediction model. IEEE Trans. Antennas Propag. 60(9), 4391–4397 (2012). ISSN: 0018-926X, 1558-2221. https://doi.org/10.1109/TAP.2012.2207073

  12. R.K. Crane, An algorithm to retrieve water vapor information from satellite measurements. Final report ADA037405. Defense Technical Information Center, Monterey, California, USA, Nov. 1976. https://apps.dtic.mil/sti/citations/ADA037405

  13. H.J. Liebe, MPM – an atmospheric millimeter-wave propagation model. Int. J. Infrared Millim. Waves 10(6), 631–650 (1989). ISSN: 0195-9271, 1572-9559. https://doi.org/10.1007/BF01009565

  14. R.A. Harris, Radiowave propagation modelling for SatCom services at Ku- Band and above: COST action 255: final report. ESA SP 1252 (ESA Publications Division, Noordwijk, 2002). ISBN: 978-92-9092-608-5

    Google Scholar 

  15. E.E. Altshuler, R.A. Marr, Cloud attenuation at millimeter wavelengths. IEEE Trans. Antennas Propag. 37(11), 1473–1479 (1989). https://doi.org/10.1109/8.43567

  16. F. Dintelmann et al., Results from 12- to 30-GHz German propagation experiments carried out with radiometers and the OLYMPUS satellite. Proc. IEEE 81(6), 876–884 (1993). https://doi.org/10.1109/5.257684

  17. E. Salonen, S. Uppala, New prediction method of cloud attenuation. Electron. Lett. 27(12), 1106 (1991). ISSN: 00135194. https://doi.org/10.1049/el:19910687

  18. A. Dissanayake, J. Allnutt, F. Haidara, A prediction model that combines rain attenuation and other propagation impairments along Earth-satellite paths. IEEE Trans. Antennas Propag. 45(10), 1546–1558 (1997). https://doi.org/10.1109/8.633864

  19. L. Luini, C. Capsoni, Modeling high-resolution 3-D cloud fields for Earth-space communication systems. IEEE Trans. Antennas Propag. 62(10), 5190–5199 (2014). https://doi.org/10.1109/TAP.2014.2341297

  20. L. Luini, C. Capsoni, Efficient calculation of cloud attenuation for Earth-space applications. IEEE Antennas Wirel. Propag. Lett. 13, 1136–1139 (2014). https://doi.org/10.1109/LAWP.2014.2329953

    Article  MATH  Google Scholar 

  21. R.E. Stewart et al., Characteristics through the melting layer of stratiform clouds. J. Atmos. Sci. 41(22), 3227–3237 (American Meteorological Society, Boston MA, USA, 1984). https://doi.org/10.1175/1520-0469(1984)041<3227:CTTMLO>2.0.CO;2

  22. P.T. Willis, A.J. Heymsfield, Structure of the melting layer in mesoscale convective system stratiform precipitation. J. Atmos. Sci. 46(13), 2008–2025 (American Meteorological Society, Boston MA, USA, 1989). https://doi.org/10.1175/1520-0469(1989)046<2008:SOTMLI>2.0.CO;2

  23. W. Zhang, S.I. Karhu, E.T. Salonen, Predictions of radiowave attenuations due to a melting layer of precipitation. IEEE Trans. Antennas Propag. 42(4), 492–500 (1994). https://doi.org/10.1109/8.286217

  24. S. Das, A. Maitra, Some melting layer characteristics at two tropical locations in Indian region, in 2011 XXXth URSI General Assembly and Scientific Symposium (2011), pp. 1–4. https://doi.org/10.1109/URSIGASS.2011.6050805

  25. G.O. Ajayi, F. Barbaliscia, Prediction of attenuation due to rain: characteristics of the 0\(^{\circ }\)C isotherm in temperate and tropical climates. Int. J. Satell. Commun. 8(3), 187–196 (1990). ISSN: 07372884, 10991247. https://doi.org/10.1002/sat.4600080311

  26. P.J. Hardaker, A study of the melting layer in single polarisation radar echoes with application to operational weather radar. Ph.D. Thesis (The University of Essex, Colchester, UK, 1992)

    Google Scholar 

  27. R. Teixeira, A. Rocha, Scintillation prediction models compared with one year of measurements in Aveiro, Portugal, in 2007 Loughborough Antennas and Propagation Conference. Institution of Electrical Engineers, London (2007), pp. 313–316. https://doi.org/10.1109/LAPC.2007.367492

  28. I.E. Otung, Prediction of tropospheric amplitude scintillation on a satellite link. IEEE Trans. Antennas Propag. 44(12), 1600–1608 (1996). https://doi.org/10.1109/8.546246

  29. M.M.J.L. van de Kamp et al., Improved models for long-term prediction of tropospheric scintillation on slant paths. IEEE Trans. Antennas Propag. 47(2), 249–260 (1999). https://doi.org/10.1109/8.761064

  30. E.C. Johnston et al., Results of low elevation angle 11 GHz satellite beacon measurements at Goonhilly, in 1991 7th International Conference on Antennas and Propagation, ICAP 91 (IEE) (1991), vol. 1, pp. 366–369

    Google Scholar 

  31. Y. Karasawa, M. Yamada, J.E. Allnutt, A new prediction method for tropospheric scintillation on Earth-space paths. IEEE Trans. Antennas Propag. 36(11), 1608–1614 (1988). https://doi.org/10.1109/8.9712

  32. H. Vasseur, Prediction of tropospheric scintillation on satellite links from radiosonde data. IEEE Trans. Antennas Propag. 47(2), 293–301 (1999). https://doi.org/10.1109/8.761069

  33. S.R. Saunders, A. Aragón-Zavala, Antennas and propagation for wireless communication systems, 2nd edn. (Wiley, Chichester, England; Hoboken, NJ, 2007). ISBN: 978-0-470-84879-1

    Google Scholar 

  34. L. Castanet et al., Comparison of various methods for combining propagation effects and predicting loss in low-availability systems in the 20-50 GHz frequency range. Int. J. Satell. Commun. 19(3), 317–334 (2001). https://doi.org/10.1002/sat.703

  35. M.M.J.L. van de Kamp, L. Castanet, Propagation impairment mitigation for millimeter wave radio systems: fade dynamics review, in PM3018, COST Action 280 1st International Workshop (2002)

    Google Scholar 

  36. J. Goldhirsh, Rain-rate duration statistics over a five-year period: a tool for assessing slant path fade durations. IEEE Trans. Antennas Propag. 43(5), 435–439 (1995). https://doi.org/10.1109/8.384186

  37. A. Safaai-Jazi, H. Ajaz, W.L. Stutzman, Empirical models for rain fade time on Ku- and Ka-band satellite links. IEEE Trans. Antennas Propag. 43(12), 1411–1415 (1995). https://doi.org/10.1109/8.475930

  38. E. Matricciani, Prediction of fade durations due to rain in satellite communication systems. Radio Sci. 32(3), 935–941 (1997). https://doi.org/10.1029/97RS00501

  39. A. Paraboni, C. Riva, A new method for the prediction of fade duration statistics in satellite links above 10 GHz. Int. J. Satell. Commun. 12(4), 387–394 (1994). ISSN: 07372884, 10991247. https://doi.org/10.1002/sat.4600120406

  40. M.M.J.L. van de Kamp, Statistical analysis of rain fade slope. IEEE Trans. Antennas Propag. 51(8), 1750–1759 (2003). https://doi.org/10.1109/TAP.2003.808542

  41. J.D. Laster, W.L. Stutzman, Frequency scaling of rain attenuation for satellite communication links. IEEE Trans. Antennas Propag. 43(11), 1207–1216 (1995). https://doi.org/10.1109/8.475092

  42. S. Bertorelli, A. Paraboni, Modelling of short-term frequency scaling for rain attenuation using ITALSAT data. Int. J. Satell. Commun. Netw. 25(3), 251–262 (2007). https://doi.org/10.1002/sat.867

  43. A. Bolea-Alamanac et al., Implementation of short-term prediction models in fade mitigation techniques control loops, in Joint COST 272/280 Workshop (2003)

    Google Scholar 

  44. P.F. Hartigan, A.P. Gallois, The use of satellite imagery for forecasting rain attenuation, in 1993 8th International Conference on Antennas and Propagation (1993), vol. 1, pp. 206–209

    Google Scholar 

  45. A.D. Panagopoulos, P.-D.M. Arapoglou, P.G. Cottis, Satellite communications at Ku, Ka, and V bands: propagation impairments and mitigation techniques. IEEE Commun. Surv. Tutor. 6(3), 2–14 (2004). ISSN: 1553-877X. https://doi.org/10.1109/COMST.2004.5342290

  46. L. Castanet, J. Lemorton, M. Bousquet, Fade mitigation techniques for New SatCom services at Ku-band and above: a review, in Fourth Ka-Band Utilization Conference. Venice, Italy, Nov. 1998

    Google Scholar 

  47. M. Filip, E. Vilar, Adaptive modulation as a fade countermeasure. An olympus experiment. Int. J. Satell. Commun. 8(1), 31–41 (1990). ISSN: 07372884, 10991247. https://doi.org/10.1002/sat.4600080104

  48. L. Luini, C. Capsoni, Spatial correlation of rainfall over Europe investigated through statistical dependence index. Electron. Lett. 49(3), 230–231 (2013). ISSN: 0013-5194, 1350-911X. https://doi.org/10.1049/el.2012.3985

  49. C. Capsoni, E. Matricciani, M. Mauri, SIRIO-OTS 12 GHz orbital diversity experiment at Fucino. IEEE Trans. Antennas Propag. 38(6), 777–782 (1990). https://doi.org/10.1109/8.55572

  50. E. Matricciani, M. Mauri, Italsat-olympus 20-GHz orbital diversity experiment at spino d’Adda. IEEE Trans. Antennas Propag. 43(1), 105–108 (1995). https://doi.org/10.1109/8.366358

  51. F. Carassa, G. Tartara, E. Matricciani, Frequency diversity and its applications. Int. J. Satell. Commun. 6(3), 313–322 (1988). ISSN: 07372884, 10991247. https://doi.org/10.1002/sat.4600060309

  52. L. Castanet, A. Bolea-Alamañac, M. Bousquet, Interference and fade mitigation techniques for Ka and Q/V band satellite communication systems, in Proceedings of the 2nd International Workshop of COST Action, vol. 280 (2003)

    Google Scholar 

  53. D.B. Hodge, An improved model for diversity gain on Earth-space propagation paths. Radio Sci. 17(06), 1393–1399 (1982). https://doi.org/10.1029/RS017i006p01393

  54. J.E. Allnut, D.V. Rogers, Novel method for predicting site diversity gain on satellite-to-ground radio paths. Electron. Lett. 18(5), 233 (1982). ISSN: 00135194. https://doi.org/10.1049/el:19820159

  55. J. Goldhirsh, Space diversity performance prediction for Earth-satellite paths using radar modeling techniques. Radio Sci. 17(06), 1400–1410 (1982). https://doi.org/10.1029/RS017i006p01400

  56. E. Matricciani, Prediction of site diversity performance in satellite communications systems affected by rain attenuation: extension of the two-layer rain model. Eur. Trans. Telecommun. 5(3) (1994). tex.eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.4460050307, pp. 327-336. https://doi.org/10.1002/ett.4460050307

  57. A.V. Bosisio, C. Riva, A novel method for the statistical prediction of rain attenuation in site diversity systems: theory and comparative testing against experimental data. Int. J. Satell. Commun. 16(1), 47–52 (1998). ISSN: 0737-2884, 1099-1247. https://doi.org/10.1002/(SICI)1099-1247(199801/02)16:1<47::AID-SAT592>3.0.CO;2-C

  58. J. Mass, A simulation study of rain attenuation and diversity effects on satellite links. COMSAT Tech. Rev. 17, 159–188 (1987). ISSN: 0095-9669

    Google Scholar 

  59. A.D. Panagopoulos et al., A new formula for the prediction of the site diversity improvement factor. Int. J. Infrared Millim. Waves 25(12), 1781–1789 (2004). ISSN: 1572-9559. https://doi.org/10.1007/s10762-004-0198-7

  60. A. Paraboni, F. Barbaliscia, Multiple site attenuation prediction models based on the rainfall structures (meso-or synoptic-scales) for advanced TLC or broadcasting systems, in XXVII URSI General Assembly. Maastricht, Netherlands (2002)

    Google Scholar 

  61. L. Luini, C. Capsoni, Multi EXCELL: a new rain field model for propagation applications. IEEE Trans. Antennas Propag. 59(11), 4286–4300 (2011). https://doi.org/10.1109/TAP.2011.2164175

  62. S.N. Livieratos et al., On the prediction of joint rain attenuation statistics in Earth-space diversity systems using copulas. IEEE Trans. Antennas Propag. 62(4), 2250–2257 (2014). ISSN: 0018-926X, 1558-2221. https://doi.org/10.1109/TAP.2014.2302302

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleš Švigelj .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kelmendi, A., Švigelj, A., Javornik, T., Hrovat, A. (2023). Propagation-Impairments Modelling and Fade-Mitigation Techniques for Earth-Satellite Links. In: Site Diversity in Satellite Communications. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-26274-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26274-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26273-9

  • Online ISBN: 978-3-031-26274-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics