Skip to main content

A Technique for Determining True Deformation Diagrams Under Dynamic Tension Using DIC

  • Chapter
  • First Online:
Sixty Shades of Generalized Continua

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 170))

  • 423 Accesses

Abstract

This article describes a pneumodynamic experimental setup created in the laboratory of dynamic tests of the Research Institute of Mechanics of the Nizhny Novgorod State University and designed to study the dynamic behavior of structural materials at average strain rates of the order of 10-100 s−1. Modern means of registration of parameters of dynamic processes are applied. The results of approbation are given on the example of dynamic tests of samples of sheet steel 09G2S. The technical and true strain diagrams in the static and dynamic range of strain rates are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hopkinson B (1914) A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets, Philosophical Transactions of the Royal Society of London, Series A Containing Papers of a Mathematical or Physical Character 213:437–456. DOI https://doi.org/10.1098/rsta.1914.0010

  2. (Rusty) Gray GT III (2000) Classic Split-Hopkinson Pressure Bar Testing, In: Mechanical Testing and Evaluation, Vol 8, ASM Handbook (Kuhn H, Medlin D Eds), ASM Int, Materials Park OH, pp 462–476. DOI https://doi.org/10.31399/asm.hb.v08.a0003296

  3. Bragov AM, Lomunov AK (1984) Features of the construction of strain diagrams by the Kolsky method (in Russ), Applied Problems of Strength and Plasticity 28:125–137.

    Google Scholar 

  4. Caverzan A, Cadoni E, di Prisco M (2012) Tensile behaviour of high performance fibre-reinforced cementitious composites at high strain rates, International Journal of Impact Engineering 45:28–38. DOI https://doi.org/10.1016/j.ijimpeng.2012.01.006

  5. Davies RM (1948) A critical study of the Hopkinson pressure bar, Philosophical Transactions of the Royal Society of London, Series A 240:375–457. DOI https://doi.org/10.1098/rsta.1948.0001

  6. Eskandari H, Nemes JA (2000) Dynamic testing of composite laminates with a tensile split Hopkinson bar, Journal of Composite Materials 34(4):260–273. DOI https://doi.org/10.1177/002199830003400401

  7. Gama BA, Lopatnikov SL, Gillespie JW Jr (2004) Hopkinson bar experimental technique: A critical review. Applied Mechanics Reviews 574:223–250. DOI https://doi.org/10.1115/1.1704626

  8. Jiang B, Zhang R (2006) Tensile properties in the through-thickness direction for a carbon fiber woven reinforced composite at impact loading rate, Journal de Physique IV 134(1):1071–1075. DOI https://doi.org/10.1051/jp4:2006134164

  9. Kolsky H (1949) An investigation of the mechanical proper-ties of materials at very high rates of loading, Proceedings of the Physical Society, Section B, 62(11):676–700. DOI https://doi.org/10.1088/0370-1301/62/11/302

  10. Lomunov AK (1987) Methodology for studying the processes of viscoplastic deformation and material properties based on the split Hopkinson bar (in Russ), PhD thesis, 1987.

    Google Scholar 

  11. Cadoni E, Dotta M, Forni D, Kaufmann H (2016) Effects of strain rate on mechanical properties in tension of a commercial aluminium alloy used in armour applications, Procedia Structural Integrity 2:986–993. DOI https://doi.org/10.1016/j.prostr.2016.06.126

  12. Cadoni E, Dotta M, Forni D, Bianchi S, Kaufmann H (2012) Strain rate effects on mechanical properties in tension of aluminium alloys used in armour applications, EPJ Web of Conferences 26:05004. DOI https://doi.org/10.1051/epjconf/20122605004

  13. Cadoni E, Dotta M, Forni D, Spaetig P (2011) Strain-rate behavior in tension of the tempered martensitic reduced activation steel Eurofer97, Journal of Nuclear Materials 414(3):360–366. DOI https://doi.org/10.1016/j.jnucmat.2011.05.002

  14. Cadoni E, Dotta M, Forni D, Tesio N (2011) Dynamic behaviour of reinforcing steel bars in tension, In: Applied Mechanics and Materials (Eds Cadoni E, di Prisco, M) 82:86–91, Trans Tech Publications Ltd. DOI https://doi.org/10.4028/www.scientific.net/AMM.82.86

  15. Asprone D, Cadoni E, Prota A, Manfredi G (2009) Strain-rate sensitivity of a pultruded E-glass/polyester composite, Journal of Composites for Construction 13(6):558–564. DOI https://doi.org/10.1061/(ASCE)CC.1943-5614.0000036

  16. Shi Y, Shi J, Luo Z, Liu H, Wang D, Shen H (2020) Experimental investigation on strength and deformation characteristics of red sandstone at strain rates of 10−2 ∼ 55 s−1, Advances in Civil Engineering, Special Issue Advancements in the Analysis and Design of Protective Structures against Extreme Loadings 2020 2020:8882976. DOI https://doi.org/10.1155/2020/8882976

  17. Grote DL, Park SW, Zhou M (2001) Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization, International Journal of Impact Engineering 25(9):869–886. DOI https://doi.org/10.1016/S0734-743X(01)00020-3

  18. Zhang QB, Zhao J. (2014) Quasi-static and dynamic fracture behaviour of rock materials: phenomena and mechanisms, International Journal of Fracture 189(1):1–32, 2014. DOI https://doi.org/10.1007/s10704-014-9959-z

  19. Ma L, Li Z, Liu J, Duan L, Wu J (2019) Mechanical properties of coral concrete subjected to uniaxial dynamic compression, Construction and Building Materials 199:244–255. DOI https://doi.org/10.1016/j.conbuildmat.2018.12.032

  20. Ma L, Wu J, Wang M, Dong L, Wei H (2020) Dynamic compressive properties of dry and saturated coral rocks at high strain rates, Engineering Geology 272:105615. DOI https://doi.org/10.1016/j.enggeo.2020.105615

  21. Solomos G, Albertini C, Labibes K, Pizzinato V, Viaccoz B (2004) Strain rate effects of nuclear steels in room and higher temperatures, Nuclear Engineering and Design 229(2-3):139–149. DOI https://doi.org/10.1016/j.nucengdes.2003.10.006

  22. Albertini C, Montagnani M (1977) Dynamic material properties of several steels for fast breeder reactor safety analysis. Final report, EUR 5787 EN, Joint Research Centre Ispra - Applied Mechanics Division.

    Google Scholar 

  23. Nilson M (2003) Constitutive model for Armox 500T and Armox 600T at low and medium strain rates, Swedish defence research agency, Technical report.

    Google Scholar 

  24. Zabotkin K, O’Toole B, Trabia M (2003) Identification of the dynamic tensile properties of metals under moderate strain rates. 16th ASCE Engineering Mechanics Conference, July 16–18, 2003 University of Washington, Seattle.

    Google Scholar 

  25. Kong SY, Remennikov A, Uy B (2010) The effect of medium strain rates on the mechanical properties of high performance steels, 21st Australasian Conference on the Mechanics of Structures and Materials, Melbourne, Victoria, Australia

    Google Scholar 

  26. Cui J, Wang S, Wang S, Li G, Wang P, Liang C (2019) The effects of strain rates on mechanical properties and failure behavior of long glass fiber reinforced thermoplastic composites, Polymers 2019(11):2019. DOI https://doi.org/10.3390/polym11122019

  27. Mirone G (2013) The dynamic effect of necking in Hopkinson bar tension tests, Mechanics of Materials 58:84–96. DOI https://doi.org/10.1016/j.mechmat.2012.11.006

  28. Mirone G, Coralloa D, Barbagallo R (2016) Interaction of strain rate and necking on the stress-strain response of uniaxial tension tests by Hopkinson bar, Procedia Structural Integrity 2:974–985. DOI https://doi.org/10.1016/j.prostr.2016.06.125

  29. Bridgman P (1964) Studies in Large Plastic Flow and Fracture, with Special Emphasis on the Effects of Hydrostatic Pressure, Harvard University Press. DOI https://doi.org/10.4159/harvard.9780674731349

  30. Alves M, Jones N (1999) Influence of hydrostatic stress on failure of axisymmetric notched specimens, Journal of the Mechanics and Physics of Solids 47:643–667. DOI https://doi.org/10.1016/S0022-5096(98)00060-X

  31. Dietrich L, Miastkowski J, Szczepinski W (1970) Nowość graniczna elementów konstrukcji (Limiting Capacity of the Construction Elements, in Polish), PWN, Warsaw.

    Google Scholar 

  32. Gromada M, Mishuris G, Öchsner A (2011) Correction Formulae for the Stress Distribution in Round Tensile Specimens at Neck Presence, SpringerBriefs in Applied Sciences and Technology, Computational Mechanics, Springer, Berlin, Heidelberg. DOI https://doi.org/10.1007/978-3-642-22134-7

  33. La Rosa G, Mirone G, Risitano A (2003) Postnecking elasto-plastic characterization: degree of approximation in the Bridgman method and properties of the flow-stress/true-stress ratio, Metallurgical and Materials Transactions A 34(3):615–624. DOI https://doi.org/10.1007/s11661-003-0096-y

  34. Ling Y (2004) Uniaxial true stress–strain after necking, AMP Journal of Technology 5:37–48.

    Google Scholar 

  35. Malinin NN, Rżysko J (1981) Mechanika materiałów (Mechanics of Materials, in Polish), PWN, Warsaw.

    Google Scholar 

  36. Mirone G (2004) A new model for the elastoplastic characterization and the stress–strain determination on the necking section of a tensile specimen, International Journal of Solids and Structures 41(13):3545–3564. DOI https://doi.org/10.1016/j.ijsolstr.2004.02.011

  37. Zhang ZL, Hauge M, Odegard J, Thaulow C (1999) Determining material true stress–strain curve from tensile specimens with rectangular cross section, International Journal of Solids and Structures 36(23):2386–2405. DOI https://doi.org/10.1016/S0020-7683(98)00153-X

  38. Davidenkov NN, Spiridonova NN (1945) Analysis of the stress state in the neck of a stretched specimen (in Russ.), Zavodskaya Laboratoriya (6):583–593.

    Google Scholar 

  39. Mehdikhani M, Aravand M, Sabuncuoglu B, Callens MG, Lomov SV, Gorbatikh L (2016) Full-field strain measurements at the micro-scale in fiber-reinforced composites using digital image correlation, Composite Structures 140:192–201. DOI https://doi.org/10.1016/j.compstruct.2015.12.020

  40. Jones I, Iadicola ME (Eds) (2018) A Good Practices Guide for Digital Image Correlation, International Digital Image Correlation Society. DOI https://doi.org/10.32720/idics/gpg.ed1/print.format

  41. Li L, Sun L, Dai Z, Xiong Z, Huang B, Zhang Y (2019) Experimental investigation on mechanical properties and failure mechanisms of polymer composite-metal hybrid materials processed by direct injection-molding adhesion method, Journal of Materials Processing Technology 263:385–395. DOI https://doi.org/10.1016/j.jmatprotec.2018.08.039

  42. Codolini A, Li QM, Wilkinson A (2018) Mechanical characterization of thin injection-moulded polypropylene specimens under large in-plane shear deformations, Polymer Testing 69:485–489. DOI https://doi.org/10.1016/j.polymertesting.2018.06.010

  43. Röhrig C, Scheer T, Diebels S (2017) Mechanical characterization of a short fiber-reinforced polymer at room temperature: Experimental setups evaluated by an optical measurement system, Continuum Mechanics and Thermodynamics 29:1093–1111. DOI https://doi.org/10.1007/s00161-017-0560-3

  44. McCormick N, Lord J (2010) Digital Image Correlation, Materialstoday 13(12):52–54. DOI https://doi.org/10.1016/S1369-7021(10)70235-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem V. Basalin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Basalin, A.V., Bragov, A.M., Konstantinov, A.Y., Filippov, A.R. (2023). A Technique for Determining True Deformation Diagrams Under Dynamic Tension Using DIC. In: Altenbach, H., Berezovski, A., dell'Isola, F., Porubov, A. (eds) Sixty Shades of Generalized Continua. Advanced Structured Materials, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-031-26186-2_4

Download citation

Publish with us

Policies and ethics