Skip to main content

On the Influence of POIsson’s Ratio on Phase Transformations Limiting Surfaces

  • 327 Accesses

Part of the Advanced Structured Materials book series (STRUCTMAT,volume 170)

Abstract

The influence of the sign and value of Poisson’s ratios of the phases on the limiting surfaces of stress-induced phase transformations is studied. Relationships defining the limiting surfaces in the case of auxetic phases are derived and the difference with the case of positive Poisson’s ratio is highlighted. Limiting surfaces for phase transformations in the cases if one or both phases are auxetic materials are compared with the limiting surfaces constructed for ‘normal’ phases.

Keywords

  • Stress-induced phase transformations
  • Limiting phase transformation surfaces
  • Metamaterials
  • Negative Poisson ratio
  • Auxetics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Love AEH (1994) A Treatise on the Mathematical Theory of Elasticity, 4th ed, New York, Dover.

    Google Scholar 

  2. Kolpakov AG (1985) Determination of the average characterisitics of elastic frameworks, PMM USSR 49(6):739–745.

    Google Scholar 

  3. Almgren RF (1985) An isotropic three-dimensional structure with Poisson’s ratio= −1, J. Elasticity 15:427–430.

    Google Scholar 

  4. Lakes R (1987) Foam structures with a negative Poisson’s ratio, Science 235:1038–40.

    Google Scholar 

  5. Evans KE, Nkansah MA, Hutchinson IJ, Rogers SC (1991) Molecular network design, Nature 353:124–124.

    Google Scholar 

  6. Lakes RS, Elms K (1993) Indentability of conventional and negative Poisson’s ratio foams, Journal of Composite Materials 27:1193–1202.

    Google Scholar 

  7. Lakes RS (1993) Design considerations for negative Poisson’s ratio materials, Journal of Mechanical Design 115:696–700.

    Google Scholar 

  8. Bezazi A, Scarpa F (2007) Mechanical behaviour of conventional and negative Poisson’s ratio thermoplastic polyurethane foams under compressive cyclic loading, International Journal of Fatigue 29(5):922–930.

    Google Scholar 

  9. Bezazi A, Scarpa F (2009) Tensile fatigue of conventional and negative Poisson’s ratio open cell PU foams, International Journal of Fatigue 31(3):488–494.

    Google Scholar 

  10. Scarpa F, Tomlinson G (2000) Theoretical characteristics of the vibration of sandwich plates with in-plane negative Poisson’s ratio values, Journal of Sound and Vibration 230:45–67.

    Google Scholar 

  11. Greaves GN, Greer AL, Lakes RS, Rouxel T (2011) Poisson’s ratio and modern materials, Nature Mater. 10(11):823–37.

    Google Scholar 

  12. Saxena KK, Das R, Calius E.P. (2016) Three decades of auxetics research – materials with negative Poisson’s ratio: a review, Adv. Eng. Mater. 18:1847–1870.

    Google Scholar 

  13. Saadatmand S, Rasoulian A, Ashjari M (2017) Auxetic materials materials with negative poisson’s ratio, Material Sci & Eng Int J. 1(2):62–64.

    Google Scholar 

  14. Lakes RS (2017) Negative-Poisson’s-Ratio Materials: Auxetic Solids, Annu. Rev. Mater. Res. 47:1.1–1.19.

    Google Scholar 

  15. Ren X, Das R, Tran P, Ngo TD, Xie YM (2018) Auxetic metamaterials and structures: a review, Smart Mater. Struct. 27:023001.

    Google Scholar 

  16. Yang W, Li ZM, Shi W, Xie B-H, Yang M-B (2004) Review on auxetic materials. Journal of Materials Science 39:3269–3279.

    Google Scholar 

  17. Mir M, Ali MA, Sami J, Ansari U (2014) Review of Mechanics and Applications of Auxetic Structures, Advances in Materials Science and Engineering 2014:753496.

    Google Scholar 

  18. Lim T-C (2015) Auxetic Materials and Structures, in: Engineering Materials, Springer, Singapore.

    Google Scholar 

  19. Hu H, Zhang M, Liu Y (2019) Auxetic Textiles. Woodhead, Duxford

    Google Scholar 

  20. Lim T-C (2020) Mechanics of Metamaterials with Negative Parameters, in Engineering Materials, Springer, Singapore.

    Google Scholar 

  21. Cui TJ, Smith DR, Liu R (Eds.) (2010) Metamaterials, Springer, New Yourk.

    Google Scholar 

  22. Lakes R (2020) Composites and Metamaterials, World Scientific, New Jersey.

    Google Scholar 

  23. Ko J, Bhullar SK, Mohtaram NK, Willerth SM, Jun MBG (2014) Using mathematical modeling to control topographical properties of poly (ε-caprolactone) melt electrospun scaffolds, Journal of Micromechanics and Microengineering 24(6):1–13.

    Google Scholar 

  24. Ali M, Busfield JC, Rehman I (2014) Auxetic oesophageal stents: structure and mechanical properties, Journal of Materials Science: Materials in Medicine 25(2):527–553.

    Google Scholar 

  25. Miller W, Ren Z, Smith CW, Evans KE (2012) A negative Poisson’s ratio carbon fibre composite using a negative Poisson’s ratio yarn reinforcement, Composites Science and Technology 72(7):761–766.

    Google Scholar 

  26. Evans KE (1991) Auxetic polymers: a new range of materials, Endeavour 15(4):170–174.

    Google Scholar 

  27. Sanamia M, Ravirala N, Alderson K, Alderson A (2014) Auxetic materials for sports applications, Procedia Engineering 72:453–458.

    Google Scholar 

  28. Duncan O, Shepherd T, Moroney C, Foster L, Venkatraman PD, Winwood K, Allen T, Alderson A (2018) Review of Auxetic Materials for Sports Applications: Expanding Options in Comfort and Protection, Applied Sciences 8(6):941.

    Google Scholar 

  29. Sloan MR, Wright JR, Evans KE (2011) The helical auxetic yarn - a novel structure for composites and textiles; geometry, manufacture and mechanical properties, Mech. Mater. 43(9):476–486.

    Google Scholar 

  30. Wang Z, Hu H (2014) Auxetic wrap-knitted spacer fabrics, Physica Status Solidi 251(2):281–288.

    Google Scholar 

  31. Lei M, Hong W, Zhao Z, Hamel C, Chen M, Lu H, and Qi HJ (2019) 3D Printing of auxetic metamaterials with digitally reprogrammable shape, ACS Appl. Mater. Interfaces 11(25):22768–22776.

    Google Scholar 

  32. Alomaraha A, Masood SH, Sbarski I, Faisal B, Gao Z, Ruan D (2020) Compressive properties of 3D printed auxetic structures: experimental and numerical studies, Virtual and Physical Prototyping 15(1):1-21.

    Google Scholar 

  33. Choudhry NK, Panda B, Kumar S (2021) In-plane energy absorption characteristics of a modified re-entrant auxetic structure fabricated via 3D printing, Composites Part B: Engineering 228:109437.

    Google Scholar 

  34. dell’Isola F, Steigmann DJ (2020) Discrete and Continuum Models for Complex Metamaterials, Cambridge University Press, Cambridge.

    Google Scholar 

  35. Girchenko AA, Eremyev VA, Altenbach H (2012) Interaction of a helical shell with a nonlinear viscous fluid, International Journal of Engineering Science 61:53–58.

    Google Scholar 

  36. Eremeyev VA, dell’Isola F, Boutin C, Steigmann D (2018) Linear pantographic sheets: existence and uniqueness of weak solutions, J. Elasticity 132:175–196.

    Google Scholar 

  37. dell’Isola F, Seppecher P, Alibert JJ, Lekszycki T, Grygoruk R, Pawlikowski M, Steigmann D, Giorgio I, Andreaus U, Turco E, Gołaszewski M, Rizzi N, Boutin C, Eremeyev VA, Misra A, Placidi L, Barchiesi E, Greco L, Cuomo M, Cazzani A, Corte AD, Battista A, Scerrato D, Zurba IE, Rahali Y, Ganghoffer JF, Müller W, Ganzosch G, Spagnuolo M, Pfaff A, Barcz K, Hoschke K, Neggers J, Hild F (2019) Pantographic metamaterials: an example of mathematically driven design and of its technological challenges, Continuum Mechanics and Thermodynamics 31(4):851-884.

    Google Scholar 

  38. Eremeyev VA, Turco E (2020) Enriched buckling for beam-lattice metamaterials, Mechanics Research Communications 103:103458.

    Google Scholar 

  39. Turco E, Barchiesi E, dell’Isola F (2022) A numerical investigation on impulseinduced nonlinear longitudinal waves in pantographic beams, Mathematics and Mechanics of Solids 27(1):22–48.

    Google Scholar 

  40. Stilz M, dell’Isola F, Giorgio I, Eremeyev VA, Ganzenmuller G, Hiermaier S (2022) Continuum models for pantographic blocks with second gradient energies which are incomplete, Mechanics Research Communications 125:103988.

    Google Scholar 

  41. Misra A, Hild F, Eremeyev VA (2023) Design of metamaterials: Preface, Mechanics Research Communications 127:104036.

    Google Scholar 

  42. Bianchi M, Scarpa F, Smith CW (2010) Shape memory behaviour in auxetic foams: Mechanical properties, Acta Materialia 58:858–865.

    Google Scholar 

  43. Wang W, He C, Xie L, Peng Q (2019) The temperature-sensitive anisotropic negative Poisson’s ratio of carbon honeycomb, Nanomaterials 9(4):487.

    Google Scholar 

  44. Li Y, Wang S, Yang B (2021) Auxetic carbon honeycomb: strain-tunable phase transitions and novel negative Poisson’s ratio, ACS Omega 6:14896–14902.

    Google Scholar 

  45. Antimonov MA, Cherkaev A, Freidin AB (2016) Phase transformations surfaces and exact energy lower bounds, Int. J. Engineering Sci. 98:153–182.

    Google Scholar 

  46. Freidin A, Sharipova L (2019) Two-phase equilibrium microstructures against optimal composite microstructures, Arch. Appl. Mech. 89(3):561–580.

    Google Scholar 

  47. Freidin A, Sharipova L, Cherkaev A (2021) On equilibrium two-phase microstructures at plane strain, Acta Mech. 232:2005–2021.

    Google Scholar 

  48. Cherkaev AV (2000) Variational Methods for Structural Optimization. New York, Springer-Verlag.

    Google Scholar 

  49. Milton GW (2004) The Theory of Composites. Cambridge Monogr. Appl. Comput. Math. 6 Cambridge University Press, Cambridge.

    Google Scholar 

  50. Chenchiah IV, Bhattacharya K (2008) The relaxation of two-well energies with possibility unequal moduli, Archive for Rational Mechanics and Analysis 187(3):409–479.

    Google Scholar 

  51. Freidin AB, Chiskis AM (1994) Regions of phase transitions in nonlinearelastic isotropic materials. Part 1: Basic relations, Mech. Solid, 29(4):91–109. Translated from Izvestia RAN, Mekhanika Tverdogo Tela 4:91–109.

    Google Scholar 

  52. Freidin AB (1999) Small strains approach to the theory on solid-solid phase transformations under the process of deformation, Studies on Elasticity and Plasticity (St. Petersburg State University) 18:266–290 (in Russian).

    Google Scholar 

  53. Morozov NF, Freidin AB (1998) Zones of phase transition zones and phase transformations in elastic bodies under various stress states, Proceedings of the Steklov Mathematical Institute 223:219–232.

    Google Scholar 

  54. Eremeev VA, Freidin AB, Sharipova LL (2003) Nonuniqueness and stability in problems of equilibrium of elastic two-phase bodies, Doklady Physics 48:359–363.

    Google Scholar 

  55. Yeremeyev VA, Freidin AB, Sharipova LL (2007) The stability of the equilibrium of two-phase elastic solids, Journal of Applied Mathematics and Mechanics 71:61–84.

    Google Scholar 

  56. Fu YB, Freidin AB (2004) Characterization and stability of two-phase piecewise homogeneous deformation, Proc Roy Soc London Ser A 460:3065–94.

    Google Scholar 

  57. Grabovsky Y, Truskinovsky L (2011) Roughening instability of broken extremals, Archive for Rational Mechanics and Analysis 200:183–202.

    Google Scholar 

  58. Grabovsky Y, Truskinovsky L (2013) Marginal material stability, Journal of Nonlinear Science 23:891–969.

    Google Scholar 

  59. Freidin AB, Sharipova LL (2003) Equilibrium two-phase deformations and phase transitions zones within framework of small strains, Nonlinear problems of continuum mech. Izvestia Vuzov. North-Caucasus region. Special issue 291–299 (in Russian).

    Google Scholar 

  60. Freidin A, Sharipova L (2006) On a model of heterogenous deformation of elastic bodies by the mechanism of multiple appearance of new phase layers, Meccanica 41(3):321–339.

    Google Scholar 

  61. Freidin AB, Vilchevskay EN, Sharipova LL (2002) Two-phase deformations within the framework of phase transition zones, Theor. Apll. Mech. 28–29:149–172.

    Google Scholar 

  62. Grinfeld M (1991) Thermodynamic Methods in the Theory of Heterogeneous Systems. Longman Sc & Tech.

    Google Scholar 

  63. Kunin IA (1983) Elastic Media with Microstructure II. Springer-Verlag, Berlin, New York, etc.

    Google Scholar 

  64. Kublanov LB, Freidin AB (1988) Solid phase seeds in a deformable material, Journal of Applied Mathematics and Mechanics (PMM USSR) 52:382–389 (translated from Prikladnaia Matematica i Mekhanika (1988) 52:493–501.

    Google Scholar 

  65. Briane M (1994) Correctors for the homogenization of a laminate, Adv. Math. Sci. Appl. 2:357–379.

    Google Scholar 

  66. Freidin AB (2007) On new phase inclusions in elastic solids, Z Angew Math Mech (ZAMM) 81(2):102–116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Freidin, A.B., Sharipova, L.L. (2023). On the Influence of POIsson’s Ratio on Phase Transformations Limiting Surfaces. In: Altenbach, H., Berezovski, A., dell'Isola, F., Porubov, A. (eds) Sixty Shades of Generalized Continua. Advanced Structured Materials, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-031-26186-2_15

Download citation