Skip to main content

New Cephalosporins: Fifth and Sixth Generations

  • Chapter
  • First Online:
New Antimicrobials: For the Present and the Future

Part of the book series: Emerging Infectious Diseases of the 21st Century ((EIDC))

Abstract

New generation (5th) of cephalosporins have been introduced on the market over the last decade to combat methicillin-resistant Staphylococcus aureus (MRSA), i.e., ceftaroline and ceftobiprole, and avoid the toxicity of vancomycin. To meet the challenge of multiresistant Enterobacteriaceae and Pseudomonas infections, a novel siderophore cephalosporin (cefiderocol) was approved by the US Food and Drug Administration (FDA) for complicated urinary infections and pyelonephritis in 2019. This promising novel cephalosporin is active in vitro against most multiresistant and carbapenem-resistant gram-negative strains, even those resistant to all other antibiotics including colistin. Thus, it will be a useful agent to reserve for these difficult to treat pan-resistant gram-negative bacteria such as P. aeruginosa, A. baumannii, S. maltophilia, B. cepacia, and Serratia spp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Isikawa T, Matsunaga N, Tawada H, et al. TAK-599, a novel N-phosphono type prodrug of anti-MRSA cephalosporin T-91825: synthesis, physiochemical and pharmacological properties. Biorg. Med Chem. 2003;11:2427–37.

    Google Scholar 

  2. Welte T, Kantecki M, Stone GG, Hammond J. Ceftaroline fosamil as a potential treatment option for Staphylococcus aureus community-acquired pneumonia in adults. Int J Antimicrob Agents. 2019;54:410–22.

    Article  CAS  PubMed  Google Scholar 

  3. Pfaller MA, Farrell DJ, Sader HS, Jones RN. AWARE Ceftaroline surveillance program [2008–2010]: trends in resistance patterns among Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the United States. Clin Infect Dis. 2012;55:S187–S93.

    Article  CAS  PubMed  Google Scholar 

  4. Shirley D-AT, Heil EL, Johnson JK. Ceftaroline fosamil: a brief clinical review. Infect Dis Ther. 2013;2:95–110.

    Article  PubMed  PubMed Central  Google Scholar 

  5. TEFLAROR [ceftaroline fosamil], prescribing information. St. Louis: forest Pharmaceuticals, Inc., 2012.

    Google Scholar 

  6. Lan S-H, Chang S-P, Lai L-C, Chao C-M. Efficacy and safety of ceftaroline for the treatment of community-acquired pneumonia: a systematic review and meta-analysis of randomized controlled trials. J Clin Med. 2019;8:824. https://doi.org/10.3390/jcm8060824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Welte T, Kantecki M, Stone GG, Hammond J. Ceftaroline fosamil as a potential treatment for Staphylococcus aureus community-acquired pneumonia in adults. Int J Antimicrob Agents. 2019;54:410–22.

    Article  CAS  PubMed  Google Scholar 

  8. Sotgiu G, Aliberti S, Gramegna A, et al. Efficacy and effectiveness of ceftaroline fosamil in patients with pneumonia: a systemic review and meta-analysis. Resp Res. 2018; https://respiratory-research.biomedcentral.com/articles/10.1186/s12931-018-0905-x.

  9. Cosimi RA, Beik N, Kubliak DW, Johnson JA. Ceftaroline for severe methicillin-resistant Staphylococcus aureus infections: a systematic review. Open forum. Infect Dis. 2017;4:ofx084.

    Google Scholar 

  10. Martin TCS, Chow S, Johns ST, Mehta SR. Ceftaroline-associated encephalopathy in patients with severe renal impairment. Clin Infect Dis. 2020;70:2002–4.

    Article  CAS  PubMed  Google Scholar 

  11. Panagiotidis G, Bacstrom T, Asker-Hagelberg JA, Weintraub A, Nord CE. Effect of ceftaroline on normal human intestinal microflora. Animocrob Agents Chemother. 2010;54:1811–4.

    Article  CAS  Google Scholar 

  12. Davies TA, Page MG, Shang W, et al. Binding of ceftobiprole and comparators to the penicillin binding proteins of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and streptococcus pneumonia. Antimicrob Agents Chemother. 2007;51:2621–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pfaller MA, Flamm RK, Mendes RE, et al. Ceftobiprole activity against gram-positive and –negative pathogens collected from the United States in 2006 and 2016. Antimicrob Agents Chemother. 2019;63:e01566–18.

    Article  CAS  PubMed  Google Scholar 

  14. Giacobbe DR, Giuseppe de Rosa F, Del Bono V, et al. Ceftobiprole: drug evaluation and place in therapy. Expert Rev Anti-Infect Ther. 2019; https://doi.org/10.1080/1478210.2019.1667229.

  15. Syed YYY. Ceftobiprole medocaril: a review of its use in patients with hospital- or community-acquired pneumonia. Drugs. 2014;74:1523–42.

    Article  CAS  PubMed  Google Scholar 

  16. Muller AE, Punt N, Mouton JW. Exposure to ceftobiprole is associated with microbiological eradication and clinical cure in patients with nosocomial pneumonia. Antimicrob Agents Chemother. 2014;58:2412–9.

    Article  Google Scholar 

  17. Nicholson SC, Welte T, File TM Jr, et al. A randomized, double-blind trial comparing ceftobiprole medocaril with ceftriaxone with or without linezolid for the treatment of patients with community-acquired pneumonia requiring hospitalization. Int J Antimicrob Agents. 2012;39:240–6.

    Article  CAS  PubMed  Google Scholar 

  18. Awad SS, Rodriguez AH, Chuang YC, et al. A phase 3 randomized double-blind comparison of ceftobiprole medocaril versus ceftazidime plus linezolid for the treatment of hospitalized acquired pneumonia. Clin Infect Dis. 2014;59:51–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Noel GJ, Strauss RS, Amsler K, et al. Results of a double-blind, randomized trial of ceftobiprole treatment of complicated skin and skin structure infections caused by gram-positive bacteria. Antimicrob Agents Chemother. 2008;52:37–44.

    Article  CAS  PubMed  Google Scholar 

  20. Noel GJ, Bush K, Bagchi P, et al. A randomized, double-blind trial comparing ceftobiprole medocaril with vancomycin plus ceftazidime for the treatment of patients with complicated skin and skin-structure infections. Clin Infect Dis. 2008;46:647–55.

    Article  PubMed  Google Scholar 

  21. Nerandzic MM, Donsky CJ. Effect of ceftobiprole treatment on growth of and toxin production by Clostridium difficile in cecal contents of mice. Antimicrob Agents Chemother. 2011;55:2174–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grau S. Safety and tolerability of ceftobiprole. Rev Esp Quimoter. 2019;32(Suppl 3):34–6.

    Google Scholar 

  23. Long SW, Olsen RJ, Mehta SC, et al. PBP2a mutation causing high-level ceftaroline resistance in clinical methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother. 2014;58:6668–74.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lahiri SD, Alm RA. Potential of Staphylococcus aureus isolates carrying different PBP2a alleles to develop resistance to ceftaroline. J Antimicrob Chemother. 2016;71:34–40.

    Article  CAS  PubMed  Google Scholar 

  25. Shaumburg F, Peters G, Alabi A, et al. Misense mutations of PBP2a are associated with reduced susceptibility of ceftaroline and ceftobiprole in African MRSA. J Antimicrob Chemother. 2016;71:41–4.

    Article  Google Scholar 

  26. Sato T, Yamawaki K. Cefiderocol: discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clin Infect Dis. 2019;69: [Suppl 7]:S538–43.

    Article  PubMed  Google Scholar 

  27. Ito A, Sato T, Ota M, et al. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against gram-negative bacteria. Antimicrob Agents Chemother. 2017;62:e01454–17.

    PubMed  PubMed Central  Google Scholar 

  28. Yamano Y. In vitro activity of cefiderocol against a broad range of clinically important gram-negative bacteria. Clin Infect Dis. 2019;69(Suppl 7):S544–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hackel MA, Tsuji M, Yamano Y, Echols R, Karlowsky JA, Sahm DF. In vitro activity of the siderophore cephalosporin, cefiderocol, against carbapenem-nonsusceptible and multidrug-resistant isolates of gram-negative bacilli collected worldwide in 2014 to 2016. Antimicrob Agents Chemother. 2018;62:e01968–17.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shields RK. Case commentary: the need for cefiderocol is clear, but are the supporting clinic data? Antimirob Agents Chemother. 2020;64:e00059–20.

    Google Scholar 

  31. Ito A, Kuroiwa M, Ishioka Y, et al. Characterization of isolates showing high MICs to cefiderocol from the global surveillance study SIDERO-WT-2014. In: Poster presentation at: American Society of Microbiology annual meeting ASM-microbe. San Francisco, 20–24 June 2019, Poster AAR-774.

    Google Scholar 

  32. Katsube T, Eschols R, Wajima T. Pharmacokinetic and pharmacodynamics profiles of cefiderocol, a novel siderophore cephalosporin. Clin Infect Dis. 2019;69(Suppl 7):S552–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vardakas KZ, Voulgaris GL, Maliaros A, Samonis G, Falagas ME. Prolonged versus short-term infusion of antipseudomonal β-lactams for patients with sepsis: a systematic review and meta-analysis of randomized trials. Lancet Infect Dis. 2018;18:108–20.

    Article  CAS  PubMed  Google Scholar 

  34. Portsmouth S, van Veenhuyzen D, Echols R, et al. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary infections caused by gram-negative uropathogens: a phase 2, randomized, double-blind. Non-inferiority trial. Lancet Infect Dis. 2018;18:1319–28.

    Article  CAS  PubMed  Google Scholar 

  35. Bassetti M, Echols R, Matsunaga Y, et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant gram-negative bacteria [CREDIBLE-CR]: a randomized, open-label, multicenter, pathogen-focused, descriptive, phase 3 trial. Lancet Infect Dis. 2021;21:226–40.

    Article  CAS  PubMed  Google Scholar 

  36. Wunderink RG, Matsunaka Y, Aryasu M, et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of gram-negative nosocomial pneumonia [APEKS-NP]: a randomized, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis. 2021;21:213–25.

    Article  CAS  PubMed  Google Scholar 

  37. Falcone M, Tiseo G, Nicastro M, et al. Cefiderocol as rescue therapy for Acinetobacter baumannii and other carbapenem-resistant gram-negative infections in intensive care unit patients. Clin Infect Dis. 2021;72:2021–4.

    Article  CAS  PubMed  Google Scholar 

  38. Tammma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy JC. Infectious Diseases Society of America 2022 guidance on the treatment of extended-spectrum β-lactamase producing enterobacterales [ESBL-E], carbapenem-resistant Enterobacterales [CRE], and Pseudomonas aeruginosa with difficult-t—treat resistance [DTR-P. aeruginosa]. Clin Infect Dis. 2022;75:187–212.

    Article  Google Scholar 

  39. Timsit J-F, Paul M, Shields RK, Echols R, Baba T, Yamano Y, Portsmouth S. Cefiderocol for treatment of infections due to metallo-β-lactamase-producing pathogens in the CREDIBLE-CR and APEKS-NP phase 3 randomized studies. Clin Infect Dis. 2022;75:1081–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Falcone M, Tiseo G. Cefiderocol for the treatment of metallo-β-lactamases producing gram-negative bacilli: light and shadows from the literature. Clin Infect Dis. 2022;75:1085–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. W. Fong .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fong, I.W. (2023). New Cephalosporins: Fifth and Sixth Generations. In: New Antimicrobials: For the Present and the Future. Emerging Infectious Diseases of the 21st Century. Springer, Cham. https://doi.org/10.1007/978-3-031-26078-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26078-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26077-3

  • Online ISBN: 978-3-031-26078-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics