Skip to main content

Experimental Animal Models

  • Chapter
  • First Online:
Scabies

Abstract

Human scabies is a cutaneous parasitosis caused by the microscopic mite Sarcoptes scabiei var. hominis. The disease is a major public health concern, especially in tropical and subtropical countries. Given the increasing need to counteract this growing public health burden, scabies research had to be developed. As the research is limited by the accessibility of the parasites, the development of a tractable experimental animal model was necessary. Several different animal models were developed. Their advantages and limits are depicted in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chosidow O. Scabies and pediculosis. Lancet. 2000;355:819–26.

    Article  CAS  PubMed  Google Scholar 

  2. Chosidow O. Clinical practices. Scabies. N Engl J Med. 2006;354:1718–27.

    Article  CAS  PubMed  Google Scholar 

  3. Karimkhani C, Colombara DV, Drucker AM, et al. The global burden of scabies: a cross-sectional analysis from the global burden of disease study 2015. Lancet Infect Dis. 2017;17:1247–54.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Currier RW, Walton SF, Currie BJ. Scabies in animals and humans: history, evolutionary perspectives, and modern clinical management. Ann N Y Acad Sci. 2011;1230:E50–60.

    Article  PubMed  Google Scholar 

  5. Walton SF, Currie BJ. Problems in diagnosing scabies, a global disease in human and animal populations. Clin Microbiol Rev. 2007;20:268–79.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hay RJ. Scabies—learning from the animals. J Eur Acad Dermatol Venereol. 2004;18:129–30.

    Article  CAS  PubMed  Google Scholar 

  7. Andriantsoanirina V, Ariey F, Izri A, et al. Sarcoptes scabiei mites in humans are distributed into three genetically distinct clades. Clin Microbiol Infect. 2015;21:1107–14.

    Article  CAS  PubMed  Google Scholar 

  8. Davies PR. Sarcoptic mange and production performance of swine: a review of the literature and studies of associations between mite infestation, growth rate and measures of mange severity in growing pigs. Vet Parasitol. 1995;60:249–64.

    Article  CAS  PubMed  Google Scholar 

  9. Andriantsoanirina V, Ariey F, Izri A, et al. Wombats acquired scabies from humans and/or dogs from outside Australia. Parasitol Res. 2015;114:2079–83.

    Article  CAS  PubMed  Google Scholar 

  10. Delafond O. Traité pratique d’entomologie et de pathologie comparée de la psore ou gale de l’homme et des animaux domestiques. Paris: Imprimerie impériale; 1862.

    Google Scholar 

  11. Fain A. Etude de la variabilité de Sarcoptes scabiei avec une révision des Sarcoptidae. Acta Zool Pathol Antverp. 1968;47:1–196.

    Google Scholar 

  12. Roberts LJ, Huffam SE, Walton SF, et al. Crusted scabies: clinical and immunological findings in seventy-eight patients and a review of the literature. J Infect. 2005;50:375–81.

    Article  CAS  PubMed  Google Scholar 

  13. Bernigaud C, Fernando DD, Lu H, et al. How to eliminate scabies parasites from fomites: a high-throughput ex vivo experimental study. J Am Acad Dermatol. 2020;83:241–5.

    Article  PubMed  Google Scholar 

  14. Arlian LG, Morgan MS. A review of Sarcoptes scabiei: past, present and future. Parasit Vectors. 2017;10:297.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Arlian LG, Vyszenski-Moher DL, Pole MJ. Survival of adults and developmental stages of Sarcoptes scabiei var. canis when off the host. Exp Appl Acarol. 1989;6:181–7.

    Article  CAS  PubMed  Google Scholar 

  16. Arlian LG, Vyszenski-Moher DL. Life cycle of Sarcoptes scabiei var. canis. J Parasitol. 1988;74:427.

    Article  CAS  PubMed  Google Scholar 

  17. Arlian LG, Runyan RA, Achar S, Estes SA. Survival and infestivity of Sarcoptes scabiei var. canis and var. hominis. J Am Acad Dermatol. 1984;11:210–5.

    Article  CAS  PubMed  Google Scholar 

  18. Arlian LG, Runyan RA, Estes SA. Cross infestivity of Sarcoptes scabiei. J Am Acad Dermatol. 1984;10:979–86.

    Article  CAS  PubMed  Google Scholar 

  19. Rodriguez-Cadenas F, Carbajal-Gonzalez MT, Fregeneda-Grandes JM, et al. Clinical evaluation and antibody responses in sheep after primary and secondary experimental challenges with the mange mite Sarcoptes scabiei var. ovis. Vet Immunol Immunopathol. 2010;133:109–16.

    Article  CAS  PubMed  Google Scholar 

  20. Arlian LG, Morgan MS, Vyszenski-Moher DL, Stemmer BL. Sarcoptes scabiei: the circulating antibody response and induced immunity to scabies. Exp Parasitol. 1994;78:37–50.

    Article  CAS  PubMed  Google Scholar 

  21. Arlian LG, Morgan MS, Rapp CM, Vyszenski-Moher DL. The development of protective immunity in canine scabies. Vet Parasitol. 1996;62:133–42.

    Article  CAS  PubMed  Google Scholar 

  22. Sarasa M, Rambozzi L, Rossi L, et al. Sarcoptes scabiei: specific immune response to sarcoptic mange in the Iberian ibex Capra pyrenaica depends on previous exposure and sex. Exp Parasitol. 2010;124:265–71.

    Article  CAS  PubMed  Google Scholar 

  23. Tarigan S, Huntley JF. Failure to protect goats following vaccination with soluble proteins of Sarcoptes scabiei: evidence for a role for IgE antibody in protection. Vet Parasitol. 2005;133:101–9.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang R, Jise Q, Zheng W, et al. Characterization and evaluation of a Sarcoptes scabiei allergen as a candidate vaccine. Parasit Vectors. 2012;5:176.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mounsey K, Ho MF, Kelly A, et al. A tractable experimental model for study of human and animal scabies. PLoS Negl Trop Dis. 2010;4:e756.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sheahan BJ. Experimental Sarcoptes scabiei infection in pigs: clinical signs and significance of infection. Vet Rec. 1974;94:202–9.

    Article  CAS  PubMed  Google Scholar 

  27. Marlière V, Roul S, Labrèze C, Taïeb A. Crusted (Norwegian) scabies induced by use of topical corticosteroids and treated successfully with ivermectin. J Pediatr. 1999;135:122–4.

    Article  PubMed  Google Scholar 

  28. Bilan P, Colin-Gorski AM, Chapelon E, et al. Crusted scabies induced by topical corticosteroids: a case report. Arch Pediatr. 2015;22:1292–4.

    Article  CAS  PubMed  Google Scholar 

  29. Estrada-Chavez G, Estrada R, Chavez-Lopez G. Misuse of topical steroids in scabies. Comm Dermatol J. 2017;13:1–12.

    Google Scholar 

  30. Lo DY, Lee WM, Chien MS, Lin CC, Lee WC. Effects of dexamethasone on peripheral blood mononuclear cell phenotype in weanling piglets. Comp Immunol Microbiol Infect Dis. 2005;28:251–8.

    Article  CAS  PubMed  Google Scholar 

  31. Flaming KP, Goff BL, Frank DE, Roth JA. Pigs are relatively resistant to dexamethasone induced immunosupression. Comp Haem Int. 1994;4:218–25.

    Article  CAS  Google Scholar 

  32. Bernigaud C, Fang F, Fischer K, et al. Preclinical study of single-dose Moxidectin, a new Oral treatment for scabies: efficacy, safety, and pharmacokinetics compared to two-dose Ivermectin in a porcine model. PLoS Negl Trop Dis. 2016;10:e0005030.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bernigaud C, Fang F, Fischer K, et al. Efficacy and pharmacokinetics evaluation of a single oral dose of Afoxolaner against Sarcoptes scabiei in the porcine scabies model for human infestation. Antimicrob Agents Chemother. 2018;62:e02334–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Casais R, Dalton KP, Milln J, et al. Primary and secondary experimental infestation of rabbits (Oryctolagus cuniculus) with Sarcoptesscabiei from a wild rabbit: factors determining resistance to reinfestation. Vet Parasitol. 2014;203:173–83.

    Article  PubMed  Google Scholar 

  35. Xu J, Huang X, He M, et al. Identification of a novel PYP-1 gene in Sarcoptes scabiei and its potential as a serodiagnostic candidate by indirect-ELISA. Parasitology. 2018;145:752–61.

    Article  CAS  PubMed  Google Scholar 

  36. Wei W, Ren Y, Shen N, et al. Comparative analysis of host resistance to Sarcoptes scabiei var. cuniculi in two different rabbit breeds. Parasit Vectors. 2019;12:530.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sharaf M, Antonios S, Mina S, Eliwa K, Rayia DA. The scabicide effect of moxidectin in vitro and in experimental animals: parasitological, histopathological and immunological evaluation. Exp Parasitol. 2020;217:107961.

    Article  CAS  PubMed  Google Scholar 

  38. Meyer W, Schwarz R, Neurand K. The skin of domestic mammals as a model for the human skin, with special reference to the domestic pig. Curr Probl Dermatol. 1978;7:39–52.

    Article  CAS  PubMed  Google Scholar 

  39. Sullivan TP, Eaglstein WH, Davis SC, et al. The pig as a model for human wound healing. Wound Repair Regen. 2001;9:66–76.

    Article  CAS  PubMed  Google Scholar 

  40. McIntyre MK, Peacock TJ, Akers KS, et al. Initial characterization of the pig skin Bacteriome and its effect on in vitro models of wound healing. PloS One. 2016;11:e0166176.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Reiter M, Knecht C, Müller A, et al. The domestic pig as a potential model for Borrelia skin infection. Ticks Tick Borne Dis. 2016;8:300–8.

    Article  PubMed  Google Scholar 

  42. Schneider MR, Wolf E. Genetically engineered pigs as investigative and translational models in dermatology. Br J Dermatol. 2016;174:237–9.

    Article  CAS  PubMed  Google Scholar 

  43. Kawamata S, Ozawa J, Hashimoto M, Kurose T, Shinohara H. Structure of the rat subcutaneous connective tissue in relation to its sliding mechanism. Arch Histol Cytol. 2003;66:273–9.

    Article  PubMed  Google Scholar 

  44. Forbes PD, Montagna W, Dobson Forbes RL. Vascular supply of the skin and hair in swine. In: Growth H, Montagna W, Dobson RL, editors. Chapter XXVII in advances in biology of skin, vol. 9. Oxford: Pergamon Press; 1969. p. 419–32.

    Google Scholar 

  45. Montagna W, Yun JS. The skin of the domestic pig. J Invest Dermatol. 1964;42:11–21.

    Article  CAS  PubMed  Google Scholar 

  46. Vardaxis NJ, Brans TA, Boon ME, Kreis RW, Marres LM. Confocal laser scanning microscopy of porcine skin: implications for human wound healing studies. J Anat. 1997;100:601–11.

    Article  Google Scholar 

  47. Mair KH, Sedlak C, Kaser T, et al. The porcine innate immune system: an update. Dev Comp Immunol. 2014;45:321–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Summerfield A, Meurens F, Ricklin ME. The immunology of the porcine skin and its value as a model for human skin. Mol Immunol. 2015;66:14–21.

    Article  CAS  PubMed  Google Scholar 

  49. Salvesen B, Mollnes TE. Pathway-specific complement activity in pigs evaluated with a human functional complement assay. Mol Immunol. 2009;46:1620–5.

    Article  CAS  PubMed  Google Scholar 

  50. Simon GA, Maibach HI. The pig as an experimental animal model of percutaneous permeation in man: qualitative and quantitative observations—an overview. Skin Pharmacol Appl Skin Physiol. 2000;13:229–34.

    Article  CAS  PubMed  Google Scholar 

  51. Meurens F, Summerfield A, Nauwynck H, et al. The pig: a model for human infectious diseases. Trends Microbiol. 2012;20:50–7.

    Article  CAS  PubMed  Google Scholar 

  52. Van Neste DJ, Staquet MJ. Similar epidermal changes in hyperkeratotic scabies of humans and pigs. Am J Dermatopathol. 1986;8:267–73.

    Article  PubMed  Google Scholar 

  53. Mofiz E, Seemann T, Bahlo M, et al. Mitochondrial genome sequence of the scabies mite provides insight into the genetic diversity of individual scabies infections. PLoS Negl Trop Dis. 2016;10:e0004384.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lefevre PC, Blancou J, Chermette R, et al. Infectious and parasitic diseases of livestock. Paris: Lavoisier; 2010.

    Book  Google Scholar 

  55. Gary C, Briand A, Lespine A, et al. [Efficacité d’une forte dose d’ivermectine et d’une dose unique de moxidectine dans un modèle porcin de gale]. Oral Communication. Journées Dermatologiques de Paris, France, 1–5 December; 2020.

    Google Scholar 

  56. Jannic A, Bernigaud C, Lespine A, et al. [Pharmacocinétique cutanée de la moxidectine et de l’ivermectine dans le modèle de gale porcine]. Journées Dermatologiques de Paris, France, 11–15 December; 2018.

    Google Scholar 

  57. Arlian LG, Runyan RA, Sorlie LB, Estes SA. Host-seeking behavior of Sarcoptes scabiei. J Am Acad Dermatol. 1984;11:594–8.

    Article  CAS  PubMed  Google Scholar 

  58. Arlian LG, Runyan RA, Vyszenski-Moher DL. Water balance and nutrient procurement of Sarcoptes scabiei var. canis (Acari: Sarcoptidae). J Med Entomol. 1988;25:64–8.

    Article  CAS  PubMed  Google Scholar 

  59. Pasay C, Mounsey K, Stevenson G, et al. Acaricidal activity of eugenol based compounds against scabies mites. PloS One. 2010;5:e12079.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pasay C, Rothwell J, Mounsey K, et al. An exploratory study to assess the activity of the acarine growth inhibitor, fluazuron, against Sarcoptes scabei infestation in pigs. Parasit Vectors. 2012;5:40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mounsey KE, Willis C, Burgess STG, et al. Quantitative PCR-based genome size estimation of the astigmatid mites Sarcoptes scabiei, Psoroptes ovis and Dermatophagoides pteronyssinus. Parasit Vectors. 2012;5:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rampton M, Walton S, Holt DC, et al. Antibody responses to Sarcoptes scabieiApolipoprotein in a porcine model: relevance to immunodiagnosis of recent infection. PloS One. 2013;8:e65354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu X, Walton SF, Murray HC, et al. Crusted scabies is associated with increased IL-17 secretion by skin T cells. Parasite Immunol. 2014;36(11):594–604.

    Article  CAS  PubMed  Google Scholar 

  64. Swe PM, Zakrzewski M, Kelly A, Krause L, Fischer K. Scabies mites alter the skin microbiome and promote growth of opportunistic pathogens in a porcine model. PLoS Negl Trop Dis. 2014;8:e2897.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mounsey KE, Murray HC, Bielefeldt-Ohmann H, et al. Prospective study in a porcine model of Sarcoptesscabiei indicates the association of Th2 and Th17 pathways with the clinical severity of scabies. PLoS Negl Trop Dis. 2015;9:e0003498.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mofiz E, Holt DC, Seemann T, et al. Genomic resources and draft assemblies of the human and porcine varieties of scabies mites, Sarcoptes scabiei var. hominis and var suis. Gigascience. 2016;5:23.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Fernando DD, Marr EJ, Zakrzewski M, et al. Gene silencing by RNA interference in Sarcoptes scabiei: a molecular tool to identify novel therapeutic targets. Parasit Vectors. 2017;10:289.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mounsey KE, Walton SF, Innes A, Cash-Deans S, McCarthy JS. In vitro efficacy of Moxidectin versus Ivermectin against Sarcoptesscabiei. Antimicrob Agents Chemother. 2017;61:e00381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fernando DD, Reynolds SL, Zakrzewski M, et al. Phylogenetic relationships, stage-specific expression and localisation of a unique family of inactive cysteine proteases in Sarcoptes scabiei. Parasit Vectors. 2018;11:301.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bernigaud C, Fernando DD, Lu H, et al. How to eliminate scabies parasites from fomites—a high throughput ex vivo experimental study. J Am Acad Dermatol. 2019;83:241–5.

    Article  PubMed  Google Scholar 

  71. Bernigaud C, Fernando DD, Lu H, et al. In vitro ovicidal activity of current and under-development scabicides: which treatments kill scabies eggs? Br J Dermatol. 2020;182:511–3.

    Article  CAS  PubMed  Google Scholar 

  72. Swe PM, Zakrzewski M, Waddell R, Sriprakash KS, Fischer K. High-throughput metagenome analysis of the Sarcoptes scabiei internal microbiota and in-situ identification of intestinal Streptomyces sp. Sci Rep. 2019;9:11744.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Korhonen PK, Gasser RB, Ma G, et al. High-quality nuclear genome forSarcoptesscabiei—a critical resource for a neglected parasite. PLoS Negl Trop Dis. 2020;14:e0008720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fang F, Bernigaud C, Candy K, et al. Efficacy assessment of biocides or repellents for the control of Sarcoptes scabiei in the environment. Parasit Vectors. 2015;8:416.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fang F, Candy K, Melloul E, et al. In vitro activity of ten essential oils against Sarcoptes scabiei. Parasit Vectors. 2016;9:594.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sanders KM, Nattkemper LA, Rosen JD, et al. Non-histaminergic itch mediators elevated in the skin of a porcine model of scabies and of human scabies patients. J Invest Dermatol. 2019;139:971–3.

    Article  CAS  PubMed  Google Scholar 

  77. Al Khoury C, Nemer N, Nemer G, et al. In vitro activity of Beauvericin against all developmental stages of Sarcoptes scabiei. Antimicrob Agents Chemother. 2020;64:e02118–9.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Casais R, Millán J, Rosell JM, Dalton KP, Prieto JM. Evaluation of an ELISA using recombinant Ssλ20ΔB3 antigen for the serological diagnosis of Sarcoptes scabiei infestation in domestic and wild rabbits. Vet Parasitol. 2015;214:315–21.

    Article  CAS  PubMed  Google Scholar 

  79. Casais R, Granda V, Balseiro A, et al. Vaccination of rabbits with immunodominant antigens from Sarcoptes scabiei induced high levels of humoral responses and pro-inflammatory cytokines but confers limited protection. Parasit Vectors. 2016;9:435.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Xu J, Huang X, Dong X, et al. Serodiagnostic potential of alpha-enolase from Sarcoptes scabiei and its possible role in host-mite interactions. Front Microbiol. 2018;9:1024.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bernigaud, C., Samarawickrama, G., Guillot, J., Fischer, K. (2023). Experimental Animal Models. In: Fischer, K., Chosidow, O. (eds) Scabies. Springer, Cham. https://doi.org/10.1007/978-3-031-26070-4_8

Download citation

Publish with us

Policies and ethics