Skip to main content

Scabies-Associated Microbiota

  • Chapter
  • First Online:
Scabies

Abstract

Globally, scabies causes substantial morbidity and mortality. In the tropics, scabies promotes opportunistic bacterial infections, leading to cellulitis/necrotising fasciitis, bacteraemia, kidney disease and/or rheumatic heart disease. With no vaccine or diagnostic tools and limited treatment options, scabies is considered neglected by the World Health Organization (WHO). Pathobiology is poorly understood, due to an absence of molecular information on mite infestation, bacterial co-infection and the interactions thereof. In providing quantitative, community-wide and potentially longitudinal data sets, skin microbiota research could be a powerful methodology for further exploration. Analysing the scabies-associated microbiome, i.e., the combined genetic material of the microorganisms in scabies infected skin samples, could provide fundamental insights into the interaction between the human host, mites and the microorganisms co-existing with them. By focussing in particular on opportunistic bacterial pathogens, it may be possible to develop novel diagnostic and/or therapeutic tools for this disease complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Madison KC. Barrier function of the skin: “la raison d’être” of the epidermis. J Invest Dermatol. 2003;121(2):231–41. https://doi.org/10.1046/j.1523-1747.2003.12359.x. PMID: 12880413.

  2. Elias PM. Stratum corneum defensive functions: an integrated view. J Invest Dermatol. 2005;125(2):183–200.

    Article  CAS  PubMed  Google Scholar 

  3. Nakatsuji T, Chiang HI, Jiang SB, Nagarajan H, Zengler K, Gallo RL. The microbiome extends to subepidermal compartments of normal skin. Nat Commun. 2013;4:1431.

    Article  PubMed  Google Scholar 

  4. Ellis SJ, Gomez NC, Levorse J, Mertz AF, Ge Y, Fuchs E. Distinct modes of cell competition shape mammalian tissue morphogenesis. Nature. 2019;569(7757):497–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jarmuda S, O'Reilly N, Zaba R, Jakubowicz O, Szkaradkiewicz A, Kavanagh K. Potential role of Demodex mites and bacteria in the induction of rosacea. J Med Microbiol. 2012;61(Pt 11):1504–10.

    Article  PubMed  Google Scholar 

  6. Zhao YE, Wu LP, Peng Y, Cheng H. Retrospective analysis of the association between Demodex infestation and rosacea. Arch Dermatol. 2010;146(8):896–902.

    PubMed  Google Scholar 

  7. Casas C, Paul C, Lahfa M, Livideanu B, Lejeune O, Alvarez-Georges S, et al. Quantification of Demodex folliculorum by PCR in rosacea and its relationship to skin innate immune activation. Exp Dermatol. 2012;21(12):906–10.

    Article  CAS  PubMed  Google Scholar 

  8. Chang YS, Huang YC. Role of Demodex mite infestation in rosacea: a systematic review and meta-analysis. J Am Acad Dermatol. 2017;77(3):441–7.e6.

    Article  PubMed  Google Scholar 

  9. Koller B, Müller-Wiefel AS, Rupec R, Korting HC, Ruzicka T. Chitin modulates innate immune responses of keratinocytes. PloS One. 2011;6(2):e16594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koçak M, Yağli S, Vahapoğlu G, Ekşioğlu M. Permethrin 5% cream versus metronidazole 0.75% gel for the treatment of papulopustular rosacea. A randomized double-blind placebo-controlled study. Dermatology. 2002;205(3):265–70.

    Article  PubMed  Google Scholar 

  11. Lacey N, Delaney S, Kavanagh K, Powell FC. Mite-related bacterial antigens stimulate inflammatory cells in rosacea. Br J Dermatol. 2007;157(3):474–81.

    Article  CAS  PubMed  Google Scholar 

  12. Szkaradkiewicz A, Chudzicka-Strugała I, Karpiński TM, Goślińska-Pawłowska O, Tułecka T, Chudzicki W, et al. Bacillus oleronius and Demodex mite infestation in patients with chronic blepharitis. Clin Microbiol Infect. 2012;18(10):1020–5.

    Article  CAS  PubMed  Google Scholar 

  13. O'Reilly N, Menezes N, Kavanagh K. Positive correlation between serum immunoreactivity to Demodex-associated bacillus proteins and erythematotelangiectatic rosacea. Br J Dermatol. 2012;167(5):1032–6.

    Article  CAS  PubMed  Google Scholar 

  14. Whitfeld M, Gunasingam N, Leow LJ, Shirato K, Preda V. Staphylococcus epidermidis: a possible role in the pustules of rosacea. J Am Acad Dermatol. 2011;64(1):49–52.

    Article  PubMed  Google Scholar 

  15. Stoeckli MR, McNeilly TN, Frew D, Marr EJ, Nisbet AJ, van den Broek AH, et al. The effect of Psoroptes ovis infestation on ovine epidermal barrier function. Vet Res. 2013;44:11.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Grice EA, Kong HH, Renaud G, Young AC, Bouffard GG, Blakesley RW, et al. A diversity profile of the human skin microbiota. Genome Res. 2008;18(7):1043–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lynar S, Currie BJ, Baird R. Scabies and mortality. Lancet Infect Dis. 2017;17(12):1234.

    Article  PubMed  Google Scholar 

  18. Swe PM, Reynolds SL, Fischer K. Parasitic scabies mites and associated bacteria joining forces against host complement defence. Parasite Immunol. 2014;36(11):585–93.

    Article  CAS  PubMed  Google Scholar 

  19. Hay RJ, Johns NE, Williams HC, Bolliger IW, Dellavalle RP, Margolis DJ, et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. J Invest Dermatol. 2014;134(6):1527–34.

    Article  CAS  PubMed  Google Scholar 

  20. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2163–96.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gear RJ, Carter JC, Carapetis JR, Baird R, Davis JS. Changes in the clinical and epidemiological features of group a streptococcal bacteraemia in Australia’s Northern Territory. Trop Med Int Health. 2015;20(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  22. McMeniman E, Holden L, Kearns T, Clucas DB, Carapetis JR, Currie BJ, et al. Skin disease in the first two years of life in aboriginal children in East Arnhem Land. Australas J Dermatol. 2011;52(4):270–3.

    Article  PubMed  Google Scholar 

  23. Whitehall J, Kuzulugil D, Sheldrick K, Wood A. Burden of paediatric pyoderma and scabies in north West Queensland. J Paediatr Child Health. 2013;49(2):141–3.

    Article  PubMed  Google Scholar 

  24. McDonald M, Currie BJ, Carapetis JR. Acute rheumatic fever: a chink in the chain that links the heart to the throat? Lancet Infect Dis. 2004;4(4):240–5.

    Article  PubMed  Google Scholar 

  25. Hoy WE, White AV, Dowling A, Sharma SK, Bloomfield H, Tipiloura BT, et al. Post-streptococcal glomerulonephritis is a strong risk factor for chronic kidney disease in later life. Kidney Int. 2012;81(10):1026–32.

    Article  CAS  PubMed  Google Scholar 

  26. Carapetis JR, Currie BJ. Group a streptococcus, pyoderma, and rheumatic fever. Lancet. 1996;347(9010):1271–2.

    Article  CAS  PubMed  Google Scholar 

  27. Marshall CS, Cheng AC, Markey PG, Towers RJ, Richardson LJ, Fagan PK, et al. Acute post-streptococcal glomerulonephritis in the Northern Territory of Australia: a review of 16 years data and comparison with the literature. Am J Trop Med Hyg. 2011;85(4):703–10.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Holt DC, McCarthy JS, Carapetis JR. Parasitic diseases of remote indigenous communities in Australia. Int J Parasitol. 2010;40(10):1119–26.

    Article  PubMed  Google Scholar 

  29. Lawrence G, Leafasia J, Sheridan J, Hills S, Wate J, Wate C, et al. Control of scabies, skin sores and haematuria in children in the Solomon Islands: another role for ivermectin. Bull World Health Organ. 2005;83(1):34–42.

    PubMed  PubMed Central  Google Scholar 

  30. Romani L, Whitfeld MJ, Koroivueta J, Kama M, Wand H, Tikoduadua L, et al. Mass drug administration for scabies control in a population with endemic disease. N Engl J Med. 2015;373(24):2305–13.

    Article  CAS  PubMed  Google Scholar 

  31. Marks M, Toloka H, Baker C, Kositz C, Asugeni J, Puiahi E, et al. Randomized trial of community treatment with azithromycin and Ivermectin mass drug administration for control of scabies and impetigo. Clin Infect Dis. 2019;68(6):927–33.

    Article  CAS  PubMed  Google Scholar 

  32. Engelman D, Kiang K, Chosidow O, McCarthy J, Fuller C, Lammie P, et al. Toward the global control of human scabies: introducing the International Alliance for the control of scabies. PLoS Negl Trop Dis. 2013;7(8):e2167.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mika A, Reynolds SL, Pickering D, McMillan D, Sriprakash KS, Kemp DJ, et al. Complement inhibitors from scabies mites promote streptococcal growth—a novel mechanism in infected epidermis? PLoS Negl Trop Dis. 2012;6(7):e1563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Swe PM, Zakrzewski M, Kelly A, Krause L, Fischer K. Scabies mites alter the skin microbiome and promote growth of opportunistic pathogens in a porcine model. PLoS Negl Trop Dis. 2014;8(5):e2897.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mounsey K, Holt D, Fischer K, Kemp DJ, Currie B, Walton SF. Analysis of Sarcoptes scabiei finds no evidence of infection with Wolbachia. Int J Parasitol. 2005;35:131–5.

    Article  CAS  PubMed  Google Scholar 

  36. Swe PM, Christian LD, Lu HC, Sriprakash KS, Fischer K. Complement inhibition by Sarcoptes scabiei protects streptococcus pyogenes—an in vitro study to unravel the molecular mechanisms behind the poorly understood predilection of S. pyogenes to infect mite-induced skin lesions. PLoS Negl Trop Dis. 2017;11(3):e0005437.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bowen AC, Tong SY, Andrews RM, O'Meara IM, McDonald MI, Chatfield MD, et al. Short-course oral co-trimoxazole versus intramuscular benzathine benzylpenicillin for impetigo in a highly endemic region: an open-label, randomised, controlled, non-inferiority trial. Lancet. 2014;384(9960):2132–40.

    Article  CAS  PubMed  Google Scholar 

  38. Burns DA. Action of cotrimoxazole on head lice. Br J Dermatol. 1987;117(3):399–400.

    Article  CAS  PubMed  Google Scholar 

  39. Swe PM, Fischer K. A scabies mite serpin interferes with complement-mediated neutrophil functions and promotes staphylococcal growth. PLoS Negl Trop Dis. 2014;8(6):e2928.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Reynolds SL, Pike RN, Mika A, Blom AM, Hofmann A, Wijeyewickrema LC, et al. Scabies mite inactive serine proteases are potent inhibitors of the human complement lectin pathway. PLoS Negl Trop Dis. 2014;8(5):e2872.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Reynolds S, Fischer K. The role of proteolytically inactive serine proteases from Sarcoptes scabiei in complement evasion. In: Dunn BM, editor. Proteinases as drug targets. Cambridge: Royal Society of Chemistry; 2012. p. 96–117.

    Google Scholar 

  42. Mika A, Reynolds SL, Mohlin FC, Willis C, Swe PM, Pickering DA, et al. Novel scabies mite serpins inhibit the three pathways of the human complement system. PloS One. 2012;7(7):e40489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mika A, Goh P, Holt DC, Kemp DJ, Fischer K. Scabies mite peritrophins are potential targets of human host innate immunity. PLoS Negl Trop Dis. 2011;5(9):e1331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Holt D, Fischer K, Allen G, Wilson D, et al. Mechanisms for a novel immune evasion strategy in the scabies mite Sarcoptes scabiei: a multigene family of inactivated serine proteases. J Invest Dermatol. 2003;121:1419.

    Article  CAS  PubMed  Google Scholar 

  45. Holt DC, Fischer K, Allen GE, Wilson D, Wilson P, Slade R, et al. Mechanisms for a novel immune evasion strategy in the scabies mite sarcoptes scabiei: a multigene family of inactivated serine proteases. J Invest Dermatol. 2003;121(6):1419–24.

    Article  CAS  PubMed  Google Scholar 

  46. Fischer K, Holt DC, Harumal P, Currie BJ, Walton SF, Kemp DJ. Generation and characterization of cDNA clones from Sarcoptes scabiei var. hominis for an expressed sequence tag library: identification of homologues of house dust mite allergens. Am J Trop Med Hyg. 2003;68(1):61–4.

    Article  CAS  PubMed  Google Scholar 

  47. Mahmood W, Viberg LT, Fischer K, Walton SF, Holt DC. An aspartic protease of the scabies mite Sarcoptes scabiei is involved in the digestion of host skin and blood macromolecules. PLoS Negl Trop Dis. 2013;7(11):e2525.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Holt D, Fischer K, Pizzutto S, Currie B, et al. A multigene family of inactivated cysteine proteases in Sarcoptes scabiei. J Invest Dermatol. 2004;123:240.

    Article  CAS  PubMed  Google Scholar 

  49. Shelley WB, Shelley ED, Burmeister V. Staphylococcus aureus colonization of burrows in erythrodermic Norwegian scabies. A case study of iatrogenic contagion. J Am Acad Dermatol. 1988;19(4):673–8.

    Article  CAS  PubMed  Google Scholar 

  50. Mofiz E, Holt DC, Seemann T, Currie BJ, Fischer K, Papenfuss AT. Genomic resources and draft assemblies of the human and porcine varieties of scabies mites, Sarcoptes scabiei var. hominis and var suis. Gigascience. 2016;5(1):1–4.

    Article  Google Scholar 

  51. Mofiz E, Seemann T, Bahlo M, Holt D, Currie BJ, Fischer K, et al. Mitochondrial genome sequence of the scabies mite provides insight into the genetic diversity of individual scabies infections. PLoS Negl Trop Dis. 2016;10(2):e0004384.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rider SD, Morgan MS, Arlian LG. Draft genome of the scabies mite. Parasit Vectors. 2015;8:585.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mounsey KE, Walton SF, Innes A, Cash-Deans S, McCarthy JS. In vitro efficacy of Moxidectin versus Ivermectin against Sarcoptes scabiei. Antimicrob Agents Chemother. 2017;61(8):e00381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu X, Walton SF, Murray HC, King M, Kelly A, Holt DC, et al. Crusted scabies is associated with increased IL-17 secretion by skin T cells. Parasite Immunol. 2014;36:594.

    Article  CAS  PubMed  Google Scholar 

  55. Rampton M, Walton SF, Holt DC, Pasay C, Kelly A, Currie BJ, et al. Antibody responses to Sarcoptes scabiei apolipoprotein in a porcine model: relevance to immunodiagnosis of recent infection. PloS One. 2013;8(6):e65354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mounsey KE, Willis C, Burgess ST, Holt DC, McCarthy J, Fischer K. Quantitative PCR-based genome size estimation of the astigmatid mites Sarcoptes scabiei, Psoroptes ovis and Dermatophagoides pteronyssinus. Parasit Vectors. 2012;5(1):3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pasay C, Mounsey K, Stevenson G, Davis R, Arlian L, Morgan M, et al. Acaricidal activity of eugenol based compounds against scabies mites. PloS One. 2010;5(8):e12079.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mounsey KE, Pasay CJ, Arlian LG, Morgan MS, Holt DC, Currie BJ, et al. Increased transcription of glutathione S-transferases in acaricide exposed scabies mites. Parasit Vectors. 2010;3:43.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bernigaud C, Fernando DD, Lu HC, Taylor S, Hartel G, Chosidow O, et al. How to eliminate scabies parasites from fomites—a high throughput ex vivo experimental study. J Am Acad Dermatol. 2020;83:241.

    Article  PubMed  Google Scholar 

  60. Bernigaud C, Fang F, Fischer K, Lespine A, Aho LS, Mullins AJ, et al. Efficacy and pharmacokinetics evaluation of a single oral dose of Afoxolaner against Sarcoptes scabiei in the porcine scabies model for human infestation. Antimicrob Agents Chemother. 2018;62(9):e02334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bernigaud C, Fang F, Fischer K, Lespine A, Aho LS, Dreau D, et al. Preclinical study of single-dose Moxidectin, a new oral treatment for scabies: efficacy, safety, and pharmacokinetics compared to two-dose Ivermectin in a porcine model. PLoS Negl Trop Dis. 2016;10(10):e0005030.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fang F, Candy K, Melloul E, Bernigaud C, Chai L, Darmon C, et al. In vitro activity of ten essential oils against Sarcoptes scabiei. Parasit Vectors. 2016;9(1):594.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Grogan MD, Bartow-McKenney C, Flowers L, Knight SAB, Uberoi A, Grice EA. Research techniques made simple: profiling the skin microbiota. J Investig Dermatol. 2019;139(4):747–52.e1.

    Article  CAS  PubMed  Google Scholar 

  64. Kong HH, Andersson B, Clavel T, Common JE, Jackson SA, Olson ND, et al. Performing skin microbiome research: a method to the madness. J Invest Dermatol. 2017;137(3):561–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12(1):87.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Engelman D, Fuller LC, Steer AC. International Alliance for the control of scabies Delphi p. Consensus criteria for the diagnosis of scabies: a Delphi study of international experts. PLoS Negl Trop Dis. 2018;12(5):e0006549.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Osti MH, Sokana O, Gorae C, Whitfeld MJ, Steer AC, Engelman D. The diagnosis of scabies by non-expert examiners: a study of diagnostic accuracy. PLoS Negl Trop Dis. 2019;13(8):e0007635.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kong HH. Skin microbiome: genomics-based insights into the diversity and role of skin microbes. Trends Mol Med. 2011;17(6):320–8.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kong HH, Segre JA. Skin microbiome: looking back to move forward. J Invest Dermatol. 2012;132(3 Pt 2):933–9.

    Article  CAS  PubMed  Google Scholar 

  70. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324(5931):1190–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gao Z, Tseng CH, Pei Z, Blaser MJ. Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci U S A. 2007;104(8):2927–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326(5960):1694–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bernigaud, C., Taylor, S., Fischer, K. (2023). Scabies-Associated Microbiota. In: Fischer, K., Chosidow, O. (eds) Scabies. Springer, Cham. https://doi.org/10.1007/978-3-031-26070-4_7

Download citation

Publish with us

Policies and ethics