Skip to main content

AI for Cyberbiosecurity in Water Systems—A Survey

  • Chapter
  • First Online:
Cyberbiosecurity

Abstract

The use of Artificial Intelligence (AI) is growing in areas where decisions and consequences have high-stakes such as larger scale software, critical infrastructure, and real-time systems. This transition in recent years has been accompanied by the growth of research in AI assurance in fields such as ethical, explainable, and trustworthy AI. In this work, we survey the literature to find the state of AI assurance for cyberbiosecurity systems as they exist now, particularly for water and agricultural supply systems; future directions are also presented. We focus on papers at the intersection of cyberbiosecurity, AI assurance, and water/agricultural supply systems, discuss how assurance techniques improve these systems, and provide pointers for future research into the application of AI for the cyberbiosecurity field. Current cyberbiosecurity solutions do not focus much on AI, but existing AI solutions for water supply and cyber or Cyber-Physical Systems (CPS) exist and can be applied to benefit cyberbiosecurity. The inclusion of AI assurances help alleviate issues of applying AI to high-stakes human-centered infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.citationgecko.com/.

References

  1. F.A. Batarseh, L. Freeman, C.H. Huang, A survey on artificial intelligence assurance. J. Big Data 8(1), 1–30 (2021)

    Article  Google Scholar 

  2. L.C. Richardson, n.d. Connell, S.M. Lewis, E. Pauwels, R.S. Murch, Cyberbiosecurity: a call for cooperation in a new threat landscape. Front. Bioeng. Biotechnol. 7, 99 (2019a)

    Google Scholar 

  3. J. Ayling, A. Chapman, Putting AI ethics to work: are the tools fit for purpose? AI Ethics, 1–25 (2021)

    Google Scholar 

  4. G.B. Frisvold, S.M. Moss, A. Hodgson, M.E. Maxon, Understanding the us bioeconomy: A new definition and landscape. Sustainability 13(4), 1627 (2021)

    Google Scholar 

  5. The White House, National bioeconomy blueprint, April 2012. Industrial Biotechnology 8(3), 97–102 (2012)

    Google Scholar 

  6. A. Aguilar, R. Wohlgemuth, T. Twardowski, Preface to the special issue bioeconomy (2018a)

    Google Scholar 

  7. Engineering National Academies of Sciences, Medicine, et al., Safeguarding the Bioeconomy (National Academies Press, 2020)

    Google Scholar 

  8. K.M. Berger, Addressing cyber threats in biology. IEEE Secur Privacy 18(3), 58–61 (2020)

    Article  Google Scholar 

  9. S.E. Duncan, R. Reinhard, R.C. Williams, F. Ramsey, W. Thomason, K. Lee, N. Dudek, S. Mostaghimi, E. Colbert, R. Murch, Cyberbiosecurity: A new perspective on protecting us food and agricultural system. Front. Bioeng. Biotechnol. 7, 63 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  10. R.A. Kemmerer, Cybersecurity, in Proceedings of the 25th International Conference on Software Engineering, 2003 (IEEE, 2003), pp. 705–715

    Google Scholar 

  11. J.A. Lewis, Cybersecurity and critical infrastructure protection. Center Strategic Int. Stud. 1, 12 (2006)

    Google Scholar 

  12. Department of Homeland Security, A glossary of common cybersecurity terminology. national initiative for cybersecurity careers and studies: Department of homeland security. http://niccs.us-cert.gov/glossary##letter_c (2022). Accessed: 2022-02-23

    Google Scholar 

  13. Z. Hu, J. Shi, Y. Huang, J. Xiong, X. Bu, Ganfuzz: a gan-based industrial network protocol fuzzing framework, in Proceedings of the 15th ACM International Conference on Computing Frontiers (2018), pp. 138–145

    Google Scholar 

  14. K. Lamshöft, T. Neubert, C. Krätzer, C. Vielhauer, J. Dittmann, Information hiding in cyber physical systems: Challenges for embedding, retrieval and detection using sensor data of the swat dataset, in Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security (2021), pp. 113–124

    Google Scholar 

  15. M. Dietz, M. Vielberth, G. Pernul, Integrating digital twin security simulations in the security operations center, in Proceedings of the 15th International Conference on Availability, Reliability and Security (2020), pp. 1–9

    Google Scholar 

  16. E.A. Lee, Cyber physical systems: Design challenges, in 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC) (IEEE, 2008), pp. 363–369

    Google Scholar 

  17. N. Jazdi, Cyber physical systems in the context of industry 4.0, in 2014 IEEE International Conference on Automation, Quality and Testing, Robotics (IEEE, 2014), pp. 1–4

    Google Scholar 

  18. J. Waage, J.D. Mumford, Agricultural biosecurity. Philos. Trans. R. Soc. B Biol. Sci. 363(1492), 863–876 (2008)

    Article  CAS  Google Scholar 

  19. FAO, Biosecurity in food and agriculture. https://www.fao.org/3/Y8453E/Y8453E.htm (2003). Accessed: 2022-02-26

  20. S. Hinchliffe, J. Allen, S. Lavau, N. Bingham, S. Carter, Biosecurity and the topologies of infected life: from borderlines to borderlands. Trans. Inst. Brit. Geogr. 38(4), 531–543 (2013)

    Article  Google Scholar 

  21. J. Peiser, A hacker broke into a florida town’s water supply and tried to poison it with lye, police said (2021). https://www.washingtonpost.com/nation/2021/02/09/oldsmar-water-supply-hack-florida/

  22. S. Mueller, Facing the 2020 pandemic: What does cyberbiosecurity want us to know to safeguard the future? Biosafety Health 3(01), 11–21 (2021)

    Article  PubMed  Google Scholar 

  23. D.G. Schmale III, A.P. Ault, W. Saad, D.T. Scott, J.A. Westrick, Perspectives on harmful algal blooms (habs) and the cyberbiosecurity of freshwater systems. Front. Bioeng. Biotechnol., 128 (2019)

    Google Scholar 

  24. J. Moyer, R. Dakin, R. Hewman, D. Groves, The case for cyber security in the water sector. J. Am. Water Works Assoc. 101(12), 30–32 (2009)

    Article  Google Scholar 

  25. M. Housh, Z. Ohar, Model-based approach for cyber-physical attack detection in water distribution systems. Water Research 139, 132–143 (2018)

    Article  CAS  PubMed  Google Scholar 

  26. R. Murch, D. DiEuliis, Mapping the cyberbiosecurity enterprise. Front. Bioeng. Biotechnol., 235 (2019)

    Google Scholar 

  27. T. Dixon, The grey zone of cyber-biological security. International Affairs 97(3), 685–702 (2021)

    Article  Google Scholar 

  28. S.L. Bernal, D.P. Martins, A.H. Celdrán, Distributed denial of service cyberbioattack affecting bacteria-based biosensing systems, in 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (IEEE, 2020), pp. 279–282

    Google Scholar 

  29. T. Drape, N. Magerkorth, A. Sen, J. Simpson, M. Seibel, R.S. Murch, S.E. Duncan, Assessing the role of cyberbiosecurity in agriculture: A case study. Front. Bioeng. Biotechnol., 742 (2021)

    Google Scholar 

  30. C. Perakslis, Cyberbiosecurity, ecopsychology, and beyond: Our formidable pit community [last word]. IEEE Technol. Soc. Mag. 39(4), 84–84 (2020)

    Article  Google Scholar 

  31. J. Goh, S. Adepu, K.N. Junejo, A. Mathur, A dataset to support research in the design of secure water treatment systems, in International Conference on Critical Information Infrastructures Security (Springer, 2016), pp. 88–99

    Google Scholar 

  32. T. Cruz, P. Simões, Down the rabbit hole: Fostering active learning through guided exploration of a scada cyber range. Applied Sciences 11(20), 9509 (2021)

    Google Scholar 

  33. Q. Lin, S. Verwer, R. Kooij, A. Mathur, Using datasets from industrial control systems for cyber security research and education, in International Conference on Critical Information Infrastructures Security (Springer, 2019), pp. 122–133

    Google Scholar 

  34. C.M. Ahmed, V.R. Palleti, A.P. Mathur, Wadi: a water distribution testbed for research in the design of secure cyber physical systems, in Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks (2017), pp. 25–28

    Google Scholar 

  35. R. Taormina, S. Galelli, N.O. Tippenhauer, E. Salomons, A. Ostfeld, Characterizing cyber-physical attacks on water distribution systems. J. Water Resour. Plan. Manag. 143(5), 04017009 (2017)

    Google Scholar 

  36. A. Ostfeld, E. Salomons, L. Ormsbee, J.G. Uber, C.M. Bros, P. Kalungi, R. Burd, B. Zazula-Coetzee, T. Belrain, D. Kang, et al., Battle of the water calibration networks. J. Water Resour. Plan. Manag. 138(5), 523–532 (2012)

    Article  Google Scholar 

  37. P.M. Laso, D. Brosset, J. Puentes, Dataset of anomalies and malicious acts in a cyber-physical subsystem. Data Brief 14, 186–191 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  38. A. Murillo, R. Taormina, N. Tippenhauer, S. Galelli, Co-simulating physical processes and network data for high-fidelity cyber-security experiments, in Sixth Annual Industrial Control System Security (ICSS) Workshop (2020), pp. 13–20

    Google Scholar 

  39. B.C. Wintle, C.R. Boehm, C. Rhodes, J.C. Molloy, P. Millett, L. Adam, R. Breitling, R. Carlson, R. Casagrande, M. Dando, et al., Point of view: A transatlantic perspective on 20 emerging issues in biological engineering. Elife 6, e30247 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  40. J.C. Reed, N. Dunaway, Cyberbiosecurity implications for the laboratory of the future. Front. Bioeng. Biotechnol., 182 (2019)

    Google Scholar 

  41. J.M. Bartoszewicz, A. Seidel, B.Y. Renard, Interpretable detection of novel human viruses from genome sequencing data. NAR Genomics Bioinforma. 3(1), lqab004 (2021)

    Google Scholar 

  42. A. Salam, Internet of things for sustainability: perspectives in privacy, cybersecurity, and future trends, in Internet of Things for Sustainable Community Development (Springer, 2020), pp. 299–327

    Google Scholar 

  43. M. Walsh, W. Streilein, Security measures for safeguarding the bioeconomy. Health Security 18(4), 313–317 (2020)

    Article  PubMed  Google Scholar 

  44. S.B. Jordan, S.L. Fenn, B.B. Shannon, Transparency as threat at the intersection of artificial intelligence and cyberbiosecurity. Computer 53(10), 59–68 (2020)

    Article  Google Scholar 

  45. F. Ramsey, H. Seyyedhasani, Cyber attacks in agriculture: protecting your farm and small business with cyberbiosecurity

    Google Scholar 

  46. L. Freeman, A. Rahman, F.A. Batarseh, Enabling artificial intelligence adoption through assurance. Social Sciences 10(9), 322 (2021)

    Google Scholar 

  47. J. Germano, Cybersecurity Risk & Responsibility in the Water Sector (American Water Works Assn, 2018)

    Google Scholar 

  48. R.M. Clark, S. Panguluri, T.D. Nelson, R.P. Wyman, Protecting drinking water utilities from cyberthreats. J. Am. Water Works Assoc. 109(INL/JOU-16-39302) (2017)

    Google Scholar 

  49. A. Aguilar, R. Wohlgemuth, T. Twardowski. Perspectives on bioeconomy (2018)

    Google Scholar 

  50. D. Wakabayashi, Self-driving uber car kills pedestrian in Arizona, where robots roam. The New York Times 19(03) (2018)

    Google Scholar 

  51. A. Wilk, Teaching AI, ethics, law and policy (2019)

    Google Scholar 

  52. C. Rudin, Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intelli. 1(5), 206–215 (2019)

    Article  Google Scholar 

  53. C. Rudin, C. Wang, B. Coker, The age of secrecy and unfairness in recidivism prediction. Preprint (2018). arXiv:1811.00731

    Google Scholar 

  54. J. Angwin, J. Larson, S. Mattu, L. Kirchner, Machine bias, in Ethics of Data and Analytics (Auerbach Publications, 2016), pp. 254–264

    Google Scholar 

  55. L.K.J.A. J. Larson, S. Mattu, How we analyzed the compas recidivism algorithm. ProPublica (2016)

    Google Scholar 

  56. M. Arnold, R.K. Bellamy, M. Hind, S. Houde, S. Mehta, A. Mojsilović, R. Nair, K.N. Ramamurthy, A. Olteanu, D. Piorkowski, et al., Factsheets: Increasing trust in AI services through supplier’s declarations of conformity. IBM J. Res. Dev. 63(4/5), 6–1 (2019)

    Article  Google Scholar 

  57. P. Laplante, D. Milojicic, S. Serebryakov, D. Bennett, Artificial intelligence and critical systems: from hype to reality. Computer 53(11), 45–52 (2020)

    Article  Google Scholar 

  58. R.V. Zicari, J. Brodersen, J. Brusseau, B. Düdder, T. Eichhorn, T. Ivanov, G. Kararigas, P. Kringen, M. McCullough, F. Möslein, et al., Z-inspection®: a process to assess trustworthy AI. IEEE Trans. Technol. Soc. 2(2), 83–97 (2021)

    Article  Google Scholar 

  59. C. Grady, S. Rajtmajer, L. Dennis, When smart systems fail: the ethics of cyber-physical critical infrastructure risk. IEEE Trans. Technol. Soc., 6–14 (2021)

    Google Scholar 

  60. R.A. Calvo, D. Peters, S. Cave, Advancing impact assessment for intelligent systems. Nature Mach. Intell. 2(2), 89–91 (2020)

    Article  Google Scholar 

  61. C.M. Hudson, n.d. Pattengale, R.K. Iyer, Z.T. Kalbarczyk, N. Alli, Genomic and synthetic biology digital biosecurity, in Pacific Symposium On Biocomputing 2022 (World Scientific, 2021), pp. 402–406

    Google Scholar 

  62. M. Gardezi, R. Stock, Growing algorithmic governmentality: Interrogating the social construction of trust in precision agriculture. J. Rural Stud. 84, 1–11 (2021)

    Article  Google Scholar 

  63. S. Ayas, M.S. Ayas, A modified densenet approach with nearmiss for anomaly detection in industrial control systems. Multimedia Tools Appl., 1–14 (2021)

    Google Scholar 

  64. C. Rodríguez Martínez, M. Quiñones-Grueiro, C. Verde, O. Llanes-Santiago, A novel approach for detection and location of cyber-attacks in water distribution networks, in International Workshop on Artificial Intelligence and Pattern Recognition (Springer, 2021), pp. 79–90

    Google Scholar 

  65. Y. Wu, S. Liu, A review of data-driven approaches for burst detection in water distribution systems. Urban Water J. 14(9), 972–983 (2017)

    Article  Google Scholar 

  66. H.H. Addeen, Y. Xiao, J. Li, M. Guizani, A survey of cyber-physical attacks and detection methods in smart water distribution systems. IEEE Access 9, 99905–99921 (2021)

    Article  Google Scholar 

  67. N. Tuptuk, P. Hazell, J. Watson, S. Hailes, A systematic review of the state of cyber-security in water systems. Water 13(1), 81 (2021)

    Google Scholar 

  68. S. Athalye, C.M. Ahmed, J. Zhou, A tale of two testbeds: a comparative study of attack detection techniques in cps, in International Conference on Critical Information Infrastructures Security (Springer, 2020), pp. 17–30

    Google Scholar 

  69. M. Abdelaty, R. Doriguzzi-Corin, D. Siracusa, Aads: A noise-robust anomaly detection framework for industrial control systems, in International Conference on Information and Communications Security (Springer, 2019), pp. 53–70

    Google Scholar 

  70. T.T. Toe, L.H. Yi, E.F.M. Josephlal, Advanced predictive techniques for detection of cyber-attacks in water infrastructures, in 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC) (IEEE, 2020), pp. 1–6

    Google Scholar 

  71. S. Abba, V. Nourani, G. Elkiran, Multi-parametric modeling of water treatment plant using ai-based non-linear ensemble. J. Water Supply Re. Technol. Aqua 68(7), 547–561 (2019)

    Article  Google Scholar 

  72. M. Al-Yaari, T.H. Aldhyani, S. Rushd, Prediction of arsenic removal from contaminated water using artificial neural network model. Applied Sciences 12(3), 999 (2022)

    Google Scholar 

  73. A. Jain, L.E. Ormsbee, Short-term water demand forecast modeling techniques–conventional methods versus AI. J. Am. Water Works Assoc. 94(7), 64–72 (2002)

    Article  CAS  Google Scholar 

  74. L. Karamoutsou, A. Psilovikos, Deep learning in water resources management: The case study of kastoria lake in greece. Water 13(23), 3364 (2021)

    Google Scholar 

  75. L. Nishi, M. Baesso, R. Santana, P. Fregadolli, D. Falavigna, A. Falavigna-Guilherme, Investigation of cryptosporidium spp. and giardia spp. in a public water-treatment system. Zoonoses Public Health 56(5), 221–228 (2009)

    Google Scholar 

  76. M. Florjanič, J. Kristl, Microbiological quality assurance of purified water by ozonization of storage and distribution system. Drug Dev. Ind. Pharm. 32(10), 1113–1121 (2006)

    Article  PubMed  Google Scholar 

  77. U. Gentile, S. Marrone, F. De Paola, R. Nardone, N. Mazzocca, M. Giugni, Model-based water quality assurance in ground and surface provisioning systems, in 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC) (IEEE, 2015), pp. 527–532

    Google Scholar 

  78. D. Ghernaout, B. Ghernaout, On the concept of the future drinking water treatment plant: algae harvesting from the algal biomass for biodiesel production—a review. Desalin. Water Treat. 49(1-3), 1–18 (2012)

    Article  CAS  Google Scholar 

  79. I. Montalvo, J. Izquierdo, R. Pérez, M.M. Tung, Particle swarm optimization applied to the design of water supply systems. Comput. Math. Appl. 56(3), 769–776 (2008)

    Article  Google Scholar 

  80. S.E. Duncan, B. Zhang, W. Thomason, M. Ellis, N. Meng, M. Stamper, R. Carneiro, T. Drape, Securing data in life sciences—a plant food (edamame) systems case study. Front. Sustain., 10 (2020)

    Google Scholar 

  81. A. Adler, J. Beal, M. Lancaster, D. Wyschogrod, Cyberbiosecurity and public health in the age of covid-19, in Emerging Threats of Synthetic Biology and Biotechnology (Springer, Dordrecht, 2021), pp. 103–115

    Google Scholar 

  82. D. Greenbaum, Cyberbiosecurity: An emerging field that has ethical implications for clinical neuroscience. Camb. Q. Healthc. Ethics 30(4), 662–668 (2021)

    Article  PubMed  Google Scholar 

  83. J. Caswell, J.D. Gans, N. Generous, C.M. Hudson, E. Merkley, C. Johnson, C. Oehmen, K. Omberg, E. Purvine, K. Taylor, et al., Defending our public biological databases as a global critical infrastructure. Front. Bioeng. Biotechnol. 7, 58 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  84. J. Li, H. Zhao, L. Zheng, W. An, Advances in synthetic biology and biosafety governance. Front. Bioeng. Biotechnol. 9, 173 (2021)

    CAS  Google Scholar 

  85. P.M. Ney, Securing the future of biotechnology: A study of emerging bio-cyber security threats to dna-information systems. Ph.D. thesis (2019)

    Google Scholar 

  86. K. Millett, E. Dos Santos, P.D. Millett, Cyber-biosecurity risk perceptions in the biotech sector. Front. Bioeng. Biotechnol. 7, 136 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  87. L.C. Richardson, S.M. Lewis, R.N. Burnette, Building capacity for cyberbiosecurity training. Front. Bioeng. Biotechnol. 7, 112 (2019b)

    Article  PubMed  PubMed Central  Google Scholar 

  88. S. Duncan, R. Carneiro, J. Braley, M. Hersh, F. Ramsey, R. Murch, Beyond ransomware: Securing the digital food chain (2021)

    Google Scholar 

  89. X.L. Palmer, E. Powell, L. Potter, Biocyberwarfare and crime: A juncture of rethought, in European Conference on Cyber Warfare and Security (Academic Conferences International Limited, 2021), pp. 517–XIV

    Google Scholar 

  90. R.J. Hester, Bioveillance: A techno-security infrastructure to preempt the dangers of informationalised biology. Sci. Culture 29(1), 153–176 (2020)

    Article  Google Scholar 

  91. K.M. Berger, P.A. Schneck, National and transnational security implications of asymmetric access to and use of biological data. Front. Bioeng. Biotechnol. 7, 21 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  92. J. Peccoud, J.E. Gallegos, R. Murch, W.G. Buchholz, S. Raman, Cyberbiosecurity: from naive trust to risk awareness. Trends Biotechnol. 36(1), 4–7 (2018)

    Article  CAS  PubMed  Google Scholar 

  93. G. Turner, The growing need for cyberbiosecurity, in InSITE 2019: Informing Science+ IT Education Conferences: Jerusalem (2019), pp. 207–215

    Google Scholar 

  94. Q. Lin, S. Adepu, S. Verwer, A. Mathur, Tabor: A graphical model-based approach for anomaly detection in industrial control systems, in Proceedings of the 2018 on Asia Conference on Computer and Communications Security (2018), pp. 525–536

    Google Scholar 

  95. J.L. Mantle, J. Rammohan, E.F. Romantseva, J.T. Welch, L.R. Kauffman, J. McCarthy, J. Schiel, J.C. Baker, E.A. Strychalski, K.C. Rogers, et al., Cyberbiosecurity for biopharmaceutical products. Front. Bioeng. Biotechnol. 7, 116 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  96. C.O. Adetunji, O.T. Olugbemi, O.A. Anani, D.I. Hefft, N. Wilson, A.S. Olayinka, K.E. Ukhurebor, Cyberespionage: Socioeconomic implications on sustainable food security, in AI, Edge and IoT-based Smart Agriculture (Elsevier, 2022), pp. 477–486

    Google Scholar 

  97. D. Gillum, L.A.O. Carrera, I.A. Mendoza, P. Bates, D. Bowens, Z. Jetson, J. Maldonado, C. Mancini, M. Miraldi, R. Moritz, et al., The 2017 arizona biosecurity workshop: an open dialogue about biosecurity. Applied Biosafety 23(4), 233–241 (2018)

    Article  Google Scholar 

  98. L. Potter, X.L. Palmer, Human factors in biocybersecurity wargames, in Future of Information and Communication Conference (Springer, 2021), pp. 666–673

    Google Scholar 

  99. S. Adepu, A. Mathur, Introducing cyber security at the design stage of public infrastructures: A procedure and case study, in Complex Systems Design & Management Asia (Springer, 2016a), pp. 75–94

    Google Scholar 

  100. A. Ilyas, L. Engstrom, A. Athalye, J. Lin, Black-box adversarial attacks with limited queries and information, in Proceedings of the 35th International Conference on Machine Learning, ICML 2018 (2018). https://arxiv.org/abs/1804.08598

  101. A. Hassanzadeh, A. Rasekh, S. Galelli, M. Aghashahi, R. Taormina, A. Ostfeld, M.K. Banks, A review of cybersecurity incidents in the water sector. J. Environ. Eng. 146(5), 03120003 (2020)

    Google Scholar 

  102. F. Pasqualetti, F. Dörfler, F. Bullo, Attack detection and identification in cyber-physical systems. IEEE Trans. Automatic Control 58(11), 2715–2729 (2013)

    Article  Google Scholar 

  103. S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Computation 9(8), 1735–1780 (1997)

    Article  CAS  PubMed  Google Scholar 

  104. J. Goh, S. Adepu, M. Tan, Z.S. Lee, Anomaly detection in cyber physical systems using recurrent neural networks, in 2017 IEEE 18th International Symposium on High Assurance Systems Engineering (HASE) (IEEE, 2017), pp. 140–145

    Google Scholar 

  105. A.P. Mathur, N.O. Tippenhauer, Swat: A water treatment testbed for research and training on ics security, in 2016 International Workshop on Cyber-Physical Systems for Smart Water Networks (CySWater) (IEEE, 2016), pp. 31–36

    Google Scholar 

  106. J. Inoue, Y. Yamagata, Y. Chen, C.M. Poskitt, J. Sun, Anomaly detection for a water treatment system using unsupervised machine learning, in 2017 IEEE International Conference on Data Mining Workshops (ICDMW) (IEEE, 2017), pp. 1058–1065

    Google Scholar 

  107. R. Taormina, S. Galelli, N.O. Tippenhauer, E. Salomons, A. Ostfeld, D.G. Eliades, M. Aghashahi, R. Sundararajan, M. Pourahmadi, M.K. Banks, et al., Battle of the attack detection algorithms: Disclosing cyber attacks on water distribution networks. J. Water Res. Plann. Manag. 144(8), 04018048 (2018)

    Google Scholar 

  108. M. Aghashahi, R. Sundararajan, M. Pourahmadi, M.K. Banks, Water distribution systems analysis symposium–battle of the attack detection algorithms (batadal), in World Environmental and Water Resources Congress 2017 (2017), pp. 101–108

    Google Scholar 

  109. B.M. Brentan, E. Campbell, G. Lima, D. Manzi, D. Ayala-Cabrera, M. Herrera, I. Montalvo, J. Izquierdo, E. Luvizotto Jr, On-line cyber attack detection in water networks through state forecasting and control by pattern recognition. in World Environmental and Water Resources Congress 2017 (2017), pp. 583–592

    Google Scholar 

  110. S.E. Chandy, A. Rasekh, Z.A. Barker, B. Campbell, M.E. Shafiee, Detection of cyber-attacks to water systems through machine-learning-based anomaly detection in scada data, in World Environmental and Water Resources Congress 2017 (2017), pp. 611–616

    Google Scholar 

  111. M. Giacomoni, N. Gatsis, A. Taha, Identification of cyber attacks on water distribution systems by unveiling low-dimensionality in the sensory data, in World Environmental and Water Resources Congress 2017 (2017), pp. 660–675

    Google Scholar 

  112. M. Mardani, G. Mateos, G.B. Giannakis, Recovery of low-rank plus compressed sparse matrices with application to unveiling traffic anomalies. IEEE Trans. Inf. Theory 59(8), 5186–5205 (2013)

    Article  Google Scholar 

  113. A.A. Abokifa, K. Haddad, C.S. Lo, P. Biswas, Detection of cyber physical attacks on water distribution systems via principal component analysis and artificial neural networks, in World Environmental and Water Resources Congress 2017 (2017), pp. 676–691

    Google Scholar 

  114. M.F.K. Pasha, B. Kc, S.L. Somasundaram, An approach to detect the cyber-physical attack on water distribution system, in World Environmental and Water Resources Congress 2017 (2017), pp. 703–711

    Google Scholar 

  115. M. Housh, Z. Ohar, Integrating physically based simulators with event detection systems: Multi-site detection approach. Water Research 110, 180–191 (2017)

    Article  CAS  PubMed  Google Scholar 

  116. M. Kravchik, A. Shabtai, Detecting cyber attacks in industrial control systems using convolutional neural networks, in Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy (2018), pp. 72–83

    Google Scholar 

  117. M.A. Umer, A. Mathur, K.N. Junejo, S. Adepu, Generating invariants using design and data-centric approaches for distributed attack detection. Int. J. Crit. Infrastruct. Prot. 28, 100341 (2020)

    Article  Google Scholar 

  118. K.N. Junejo, J. Goh, Behaviour-based attack detection and classification in cyber physical systems using machine learning, in Proceedings of the 2nd ACM International Workshop on Cyber-Physical System Security (2016), pp. 34–43

    Google Scholar 

  119. S. Adepu, A. Mathur, Distributed detection of single-stage multipoint cyber attacks in a water treatment plant, in Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security (2016), pp. 449–460

    Google Scholar 

  120. S. Adepu, A. Mathur, An investigation into the response of a water treatment system to cyber attacks, in 2016 IEEE 17th International Symposium on High Assurance Systems Engineering (HASE) (IEEE, 2016), pp. 141–148

    Google Scholar 

  121. S. Adepu, A. Mathur, Distributed attack detection in a water treatment plant: Method and case study. IEEE Trans. Dependable Secure Comput. 18(1), 86–99 (2018)

    Article  Google Scholar 

  122. A. Al-Abassi, H. Karimipour, A. Dehghantanha, R.M. Parizi, An ensemble deep learning-based cyber-attack detection in industrial control system. IEEE Access 8, 83965–83973 (2020)

    Article  Google Scholar 

  123. M. Sermesant, H. Delingette, H. Cochet, P. Jaïs, N. Ayache, Applications of artificial intelligence in cardiovascular imaging. Nat. Rev. Cardiol. 18(8), 600–609 (2021)

    Article  PubMed  Google Scholar 

  124. P. Sinčak, J. Ondo, D. Kaposztasova, M. Virčikova, Z. Vranayova, J. Sabol, Artificial intelligence in public health prevention of legionelosis in drinking water systems. Int. J. Environ. Res. Public Health 11(8), 8597–8611 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  125. J.M. Wing, Trustworthy AI. Commun. ACM 64(10), 64–71 (2021)

    Article  Google Scholar 

  126. S. Thiebes, S. Lins, A. Sunyaev, Trustworthy artificial intelligence. Electronic Markets 31(2), 447–464 (2021)

    Article  Google Scholar 

  127. V. Morckel, K. Terzano, Legacy city residents’ lack of trust in their governments: An examination of flint, michigan residents’ trust at the height of the water crisis. J. Urban Aff. 41(5), 585–601 (2019)

    Article  Google Scholar 

  128. O. Inderwildi, C. Zhang, X. Wang, M. Kraft, The impact of intelligent cyber-physical systems on the decarbonization of energy. Energy Environ. Sci. 13(3), 744–771 (2020)

    Article  CAS  Google Scholar 

  129. C.S. Wickramasinghe, D.L. Marino, J. Grandio, M. Manic, Trustworthy AI development guidelines for human system interaction, in 2020 13th International Conference on Human System Interaction (HSI) (IEEE, 2020), pp. 130–136

    Google Scholar 

  130. R. Kaasschieter. The “why” in building trust in AI (2020). https://www.capgemini.com/2020/09/the-why-in-building-trust-in-ai/#:~:text=Accountability2C%20transparency%2C%20fairness%2C%20etc,they%20will%20not%20buy%20it

  131. N.A. Smuha, The eu approach to ethics guidelines for trustworthy artificial intelligence. Comput. Law Rev. Int. 20(4), 97–106 (2019)

    Article  Google Scholar 

  132. H. Liu, Y. Wang, W. Fan, X. Liu, Y. Li, S. Jain, Y. Liu, A.K. Jain, J. Tang, Trustworthy AI: A computational perspective. Preprint (2021). arXiv:2107.06641

    Google Scholar 

  133. E. Toreini, M. Aitken, K.P. Coopamootoo, K. Elliott, V.G. Zelaya, P. Missier, M. Ng, A. van Moorsel, Technologies for trustworthy machine learning: A survey in a socio-technical context. Preprint (2020). arXiv:2007.08911

    Google Scholar 

  134. B.W. Israelsen, N.R. Ahmed, “dave... i can assure you... that it’s going to be all right...” a definition, case for, and survey of algorithmic assurances in human-autonomy trust relationships. ACM Comput. Surv. (CSUR) 51(6), 1–37 (2019)

    Google Scholar 

  135. G. Bernieri, M. Conti, F. Turrin, Evaluation of machine learning algorithms for anomaly detection in industrial networks, in 2019 IEEE International Symposium on Measurements & Networking (M&N) (IEEE, 2019), pp. 1–6

    Google Scholar 

  136. S.D. Anton, S. Kanoor, D. Fraunholz, H.D. Schotten, Evaluation of machine learning-based anomaly detection algorithms on an industrial modbus/tcp data set, in Proceedings of the 13th International Conference on Availability, Reliability and Security (2018), pp. 1–9

    Google Scholar 

  137. H. Wiemer, A. Dementyev, S. Ihlenfeldt, A holistic quality assurance approach for machine learning applications in cyber-physical production systems. Applied Sciences 11(20), 9590 (2021)

    Google Scholar 

  138. B. Li, P. Qi, B. Liu, S. Di, J. Liu, J. Pei, J. Yi, B. Zhou, Trustworthy AI: From principles to practices. Preprint (2021b). arXiv:2110.01167

    Google Scholar 

  139. J. Mökander, L. Floridi, Ethics-based auditing to develop trustworthy AI. Minds Mach. 31(2), 323–327 (2021)

    Article  Google Scholar 

  140. E. Daglarli, Explainable artificial intelligence (xai) approaches and deep meta-learning models for cyber-physical systems, in Artificial Intelligence Paradigms for Smart Cyber-Physical Systems (IGI Global, 2021), pp. 42–67

    Google Scholar 

  141. D. Kaur, S. Uslu, A. Durresi, Requirements for trustworthy artificial intelligence—a review, in International Conference on Network-Based Information Systems (Springer, 2020), pp. 105–115

    Google Scholar 

  142. C. Louisell, K. Heaslip, Securing the digitally managed water supply, in World Environmental and Water Resources Congress 2020: Emerging and Innovative Technologies and International Perspectives (American Society of Civil Engineers Reston, VA, 2020), pp. 1–11

    Google Scholar 

  143. J. Bergal, Florida hack exposes danger to water systems (2021). https://www.pewtrusts.org/en/research-and-analysis/blogs/stateline/2021/03/10/florida-hack-exposes-danger-to-water-systems

  144. B. Kerstein, Israel thwarts major coordinated cyber-attack on its water infrastructure command and control systems (2020). https://www.algemeiner.com/2020/04/26/israel-thwarts-major-coordinated-cyber-attack-on-its-water-infrastructure-command-and-control-systems/

  145. M. Taddeo, T. McCutcheon, L. Floridi, Trusting artificial intelligence in cybersecurity is a double-edged sword. Nat. Mach. Intell. 1(12), 557–560 (2019)

    Article  Google Scholar 

  146. N. Nicolaou, D.G. Eliades, C. Panayiotou, M.M. Polycarpou, Reducing vulnerability to cyber-physical attacks in water distribution networks, in 2018 international workshop on cyber-physical systems for smart water networks (CySWater) (IEEE, 2018), pp. 16–19

    Google Scholar 

  147. A. Khaled, S. Ouchani, Z. Tari, K. Drira, Assessing the severity of smart attacks in industrial cyber-physical systems. ACM Trans. Cyber Phys. Syst. 5(1), 1–28 (2020)

    Article  Google Scholar 

  148. F. Pasqualetti, F. Dörfler, F. Bullo, Cyber-physical security via geometric control: Distributed monitoring and malicious attacks, in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) (IEEE, 2012), pp. 3418–3425

    Google Scholar 

  149. Y. Wu, H.N. Dai, H. Tang, Graph neural networks for anomaly detection in industrial internet of things. IEEE Internet Things J. (2021)

    Google Scholar 

  150. B. Siegel, Industrial anomaly detection: A comparison of unsupervised neural network architectures. IEEE Sens. Lett. 4(8), 1–4 (2020)

    Article  Google Scholar 

  151. L. Rosa, T. Cruz, M.B. de Freitas, P. Quitério, J. Henriques, F. Caldeira, E. Monteiro, P. Simões, Intrusion and anomaly detection for the next-generation of industrial automation and control systems. Future Gener. Comput. Syst. 119, 50–67 (2021)

    Article  Google Scholar 

  152. L.A. Maglaras, J. Jiang, Intrusion detection in scada systems using machine learning techniques, in 2014 Science and Information Conference (IEEE, 2014), pp. 626–631

    Google Scholar 

  153. C.M. Ahmed, G.R. MR, A.P. Mathur, Challenges in machine learning based approaches for real-time anomaly detection in industrial control systems, in Proceedings of the 6th ACM on Cyber-Physical System Security Workshop (2020), pp. 23–29

    Google Scholar 

  154. J. Zhang, L. Pan, Q.L. Han, C. Chen, S. Wen, Y. Xiang, Deep learning based attack detection for cyber-physical system cybersecurity: A survey. IEEE/CAA J. Automat. Sin. 9(3), 377–391 (2021)

    Article  Google Scholar 

  155. Y. Luo, Y. Xiao, L. Cheng, G. Peng, D. Yao, Deep learning-based anomaly detection in cyber-physical systems: Progress and opportunities. ACM Comput. Surv. (CSUR) 54(5), 1–36 (2021)

    Google Scholar 

  156. N. Kadosh, A. Frid, M. Housh, Detecting cyber-physical attacks in water distribution systems: One-class classifier approach. J. Water Resour. Plann. Manag. 146(8), 04020060 (2020)

    Google Scholar 

  157. D.C.L. Sung, G.R. MR, A.P. Mathur, Design-knowledge in learning plant dynamics for detecting process anomalies in water treatment plants. Comput. Secur. 113, 102532 (2022)

    Google Scholar 

  158. D. Garcia, V. Puig, J. Quevedo, Prognosis of water quality sensors using advanced data analytics: Application to the barcelona drinking water network. Sensors 20(5), 1342 (2020)

    Google Scholar 

  159. R. Taormina, S. Galelli, Real-time detection of cyber-physical attacks on water distribution systems using deep learning, in World Environmental and Water Resources Congress 2017 (2017), pp. 469–479

    Google Scholar 

  160. A.A. Abokifa, K. Haddad, C. Lo, P. Biswas, Real-time identification of cyber-physical attacks on water distribution systems via machine learning–based anomaly detection techniques. J. Water Resour. Plann. Manag. 145(1), 04018089 (2019)

    Google Scholar 

  161. N. Neha, S. Priyanga, S. Seshan, R. Senthilnathan, V. Shankar Sriram, Sco-rnn: A behavioral-based intrusion detection approach for cyber physical attacks in scada systems, in Inventive Communication and Computational Technologies (Springer, 2020), pp. 911–919

    Google Scholar 

  162. J. Kim, J.H. Yun, H.C. Kim, Anomaly detection for industrial control systems using sequence-to-sequence neural networks, in Computer Security (Springer, 2019), pp. 3–18

    Google Scholar 

  163. S. Sapkota, A. Mehdy, S. Reese, H. Mehrpouyan, Falcon: Framework for anomaly detection in industrial control systems. Electronics 9(8), 1192 (2020)

    Google Scholar 

  164. C.H. Yoong, J. Heng, Framework for continuous system security protection in swat, in Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control (2019), pp. 1–6

    Google Scholar 

  165. L.H.A. Reis, A. Murillo Piedrahita, S. Rueda, N.C. Fernandes, D.S. Medeiros, M.D. de Amorim, D.M. Mattos, Unsupervised and incremental learning orchestration for cyber-physical security. Trans. Emerg. Telecommun. Technol. 31(7), e4011 (2020)

    Google Scholar 

  166. M. Gauthama Raman, N. Somu, A.P. Mathur, Anomaly detection in critical infrastructure using probabilistic neural network, in International Conference on Applications and Techniques in Information Security (Springer, 2019), pp. 129–141

    Google Scholar 

  167. S. Kim, W. Jo, T. Shon, Apad: autoencoder-based payload anomaly detection for industrial ioe. Appl. Soft Comput. 88, 106017 (2020)

    Article  Google Scholar 

  168. S.K. Alabugin, A.N. Sokolov, Applying of generative adversarial networks for anomaly detection in industrial control systems, in 2020 Global Smart Industry Conference (GloSIC) (IEEE, 2020), pp. 199–203

    Google Scholar 

  169. D.D. Tiwari, S. Naskar, A.S. Sai, V.R. Palleti, Attack detection using unsupervised learning algorithms in cyber-physical systems, in Computer Aided Chemical Engineering, vol. 50 (Elsevier, 2021), pp. 1259–1264

    Google Scholar 

  170. W. Zhou, X.-m. Kong, K.-l. Li, X.-m. Li, L.-l. Ren, Y. Yan, Y. Sha, X.-y. Cao, X.-j. Liu, Attack sample generation algorithm based on data association group by gan in industrial control dataset. Computer Communications 173, 206–213 (2021)

    Article  Google Scholar 

  171. M.G. Raman, W. Dong, A. Mathur, Deep autoencoders as anomaly detectors: Method and case study in a distributed water treatment plant. Comput. Secur. 99, 102055 (2020)

    Article  Google Scholar 

  172. R. Taormina, S. Galelli, Deep-learning approach to the detection and localization of cyber-physical attacks on water distribution systems. J. Water Resour. Plann. Manag. 144(10), 04018065 (2018)

    Google Scholar 

  173. H. Wijaya, M. Aniche, A. Mathur, Domain-based fuzzing for supervised learning of anomaly detection in cyber-physical systems, in Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops (2020), pp. 237–244

    Google Scholar 

  174. P. Schneider, K. Böttinger, High-performance unsupervised anomaly detection for cyber-physical system networks, in Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and Privacy (2018), pp. 1–12

    Google Scholar 

  175. M. Elnour, N. Meskin, K.M. Khan, Hybrid attack detection framework for industrial control systems using 1d-convolutional neural network and isolation forest, in 2020 IEEE Conference on Control Technology and Applications (CCTA) (IEEE, 2020), pp. 877–884

    Google Scholar 

  176. R. Alguliyev, Y. Imamverdiyev, L. Sukhostat, Hybrid deepgcl model for cyber-attacks detection on cyber-physical systems. Neural Comput. Appl. 33(16), 10211–10226 (2021)

    Article  Google Scholar 

  177. Z. Chen, D. Chen, X. Zhang, Z. Yuan, X. Cheng, Learning graph structures with transformer for multivariate time series anomaly detection in iot. IEEE Internet Things J. (2021)

    Google Scholar 

  178. Y. Chen, C.M. Poskitt, J. Sun, S. Adepu, F. Zhang, Learning-guided network fuzzing for testing cyber-physical system defences, in 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE) (IEEE, 2019), pp. 962–973

    Google Scholar 

  179. A. Meleshko, V. Desnitsky, I. Kotenko, Machine learning based approach to detection of anomalous data from sensors in cyber-physical water supply systems, in IOP Conference Series: Materials Science and Engineering, vol. 709 (IOP Publishing, 2020), p. 033034

    Google Scholar 

  180. P. Perrone, F. Flammini, R. Setola, Machine learning for threat recognition in critical cyber-physical systems, in 2021 IEEE International Conference on Cyber Security and Resilience (CSR) (IEEE, 2021), pp. 298–303

    Google Scholar 

  181. S. Athalye, C. Mujeeb Ahmed, J. Zhou, Model-based cps attack detection techniques: Strengths and limitations, in Security in Cyber-Physical Systems (Springer, 2021), pp. 155–187

    Google Scholar 

  182. A. Robles-Durazno, N. Moradpoor, J. McWhinnie, G. Russell, Z. Tan, Newly engineered energy-based features for supervised anomaly detection in a physical model of a water supply system. Ad Hoc Networks 120, 102590 (2021)

    Article  Google Scholar 

  183. J. Sun, Z. Yang, Objsim: efficient testing of cyber-physical systems, in Proceedings of the 4th ACM SIGSOFT International Workshop on Testing, Analysis, and Verification of Cyber-Physical Systems and Internet of Things (2020), pp. 1–2

    Google Scholar 

  184. S. Alqurashi, H. Shirazi, I. Ray, On the performance of isolation forest and multi layer perceptron for anomaly detection in industrial control systems networks, in 2021 8th International Conference on Internet of Things: Systems, Management and Security (IOTSMS) (IEEE, 2021), pp. 1–6

    Google Scholar 

  185. M. Balaji, S. Shrivastava, S. Adepu, A. Mathur, Super detector: An ensemble approach for anomaly detection in industrial control systems, in International Conference on Critical Information Infrastructures Security (Springer, 2021), pp. 24–43

    Google Scholar 

  186. A.N. Jahromi, H. Karimipour, A. Dehghantanha, K.K.R. Choo, Toward detection and attribution of cyber-attacks in iot-enabled cyber–physical systems. IEEE Internet Things J. 8(17), 13712–13722 (2021)

    Article  Google Scholar 

  187. M. Baptiste, F. Julien, S. Franck, Systematic and efficient anomaly detection framework using machine learning on public ics datasets, in 2021 IEEE International Conference on Cyber Security and Resilience (CSR) (IEEE, 2021), pp. 292–297

    Google Scholar 

  188. T. Chalongvorachai, K. Woraratpanya, A data generation framework for extremely rare case signals. Heliyon 7(8), e07687 (2021)

    Google Scholar 

  189. G.R. MR, N. Somu, A.P. Mathur, A multilayer perceptron model for anomaly detection in water treatment plants. Int. J. Crit. Infrastruct. Prot. 31, 100393 (2020)

    Google Scholar 

  190. P.F. de Araujo-Filho, G. Kaddoum, D.R. Campelo, A.G. Santos, D. Macêdo, C. Zanchettin, Intrusion detection for cyber–physical systems using generative adversarial networks in fog environment. IEEE Internet Things J. 8(8), 6247–6256 (2020)

    Article  Google Scholar 

  191. F. Turrin, A. Erba, N.O. Tippenhauer, M. Conti, A statistical analysis framework for ics process datasets, in Proceedings of the 2020 Joint Workshop on CPS&IoT Security and Privacy (2020), pp. 25–30

    Google Scholar 

  192. G. Sebestyen, A. Hangan, Z. Czako, Anomaly detection in water supply infrastructure systems, in 2021 23rd International Conference on Control Systems and Computer Science (CSCS) (IEEE, 2021), pp. 349–355

    Google Scholar 

  193. L. Gjorgiev, S. Gievska, Time series anomaly detection with variational autoencoder using mahalanobis distance, in International Conference on ICT Innovations (Springer, 2020), pp. 42–55

    Google Scholar 

  194. S. Chockalingam, W. Pieters, A. Teixeira, P. van Gelder, Bayesian network model to distinguish between intentional attacks and accidental technical failures: a case study of floodgates. Cybersecurity 4(1), 1–19 (2021)

    Article  Google Scholar 

  195. R. Qadeer, C. Murguia, C.M. Ahmed, J. Ruths, Multistage downstream attack detection in a cyber physical system, in Computer Security (Springer, 2017), pp. 177–185

    Google Scholar 

  196. C.M. Ahmed, S. Adepu, A. Mathur, Limitations of state estimation based cyber attack detection schemes in industrial control systems, in 2016 Smart City Security and Privacy Workshop (SCSP-W) (IEEE, 2016), pp. 1–5

    Google Scholar 

  197. C.M. Ahmed, M. Ochoa, J. Zhou, A.P. Mathur, R. Qadeer, C. Murguia, J. Ruths, Noiseprint: Attack detection using sensor and process noise fingerprint in cyber physical systems, in Proceedings of the 2018 on Asia Conference on Computer and Communications Security (2018), pp. 483–497

    Google Scholar 

  198. T.K. Das, S. Adepu, J. Zhou, Anomaly detection in industrial control systems using logical analysis of data. Comput. Secur. 96, 101935 (2020)

    Article  Google Scholar 

  199. S. Adepu, J. Prakash, A. Mathur, Waterjam: An experimental case study of jamming attacks on a water treatment system, in 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C) (IEEE, 2017), pp. 341–347

    Google Scholar 

  200. S. Liyakkathali, F. Furtado, G. Sugumar, A. Mathur, A mechanism to assess the effectiveness anomaly detectors in industrial control systems. J. Integr. Des. Process Sci. (Preprint), 1–26 (2022)

    Google Scholar 

  201. G. Sugumar, A. Mathur, Testing the effectiveness of attack detection mechanisms in industrial control systems, in 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C) (IEEE, 2017), pp. 138–145

    Google Scholar 

  202. A. Mathur, Secwater: A multi-layer security framework for water treatment plants, in Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks (2017), pp. 29–32

    Google Scholar 

  203. D. Dovžan, V. Logar, I. Škrjanc, Implementation of an evolving fuzzy model (efumo) in a monitoring system for a waste-water treatment process. IEEE Trans. Fuzzy Syst. 23(5), 1761–1776 (2014)

    Article  Google Scholar 

  204. S. Adepu, S. Shrivastava, A. Mathur, Argus: An orthogonal defense framework to protect public infrastructure against cyber-physical attacks. IEEE Internet Comput. 20(5), 38–45 (2016)

    Article  Google Scholar 

  205. S. Adepu, A. Mathur, Assessing the effectiveness of attack detection at a hackfest on industrial control systems. IEEE Trans. Sustain. Comput. 6(2), 231–244 (2018b)

    Article  Google Scholar 

  206. D. Urbina, J. Giraldo, N.O. Tippenhauer, A. Cardenas, Attacking fieldbus communications in ics: Applications to the swat testbed, in Proceedings of the Singapore Cyber-Security Conference (SG-CRC) 2016 (IOS Press, 2016), pp. 75–89

    Google Scholar 

  207. K. Pal, S. Adepu, J. Goh, Effectiveness of association rules mining for invariants generation in cyber-physical systems, in 2017 IEEE 18th International Symposium on High Assurance Systems Engineering (HASE) (IEEE, 2017), pp. 124–127

    Google Scholar 

  208. M.A. Umer, A. Mathur, K.N. Junejo, S. Adepu, Integrating design and data centric approaches to generate invariants for distributed attack detection, in Proceedings of the 2017 Workshop on Cyber-Physical Systems Security and Privacy (2017), pp. 131–136

    Google Scholar 

  209. E. Kang, S. Adepu, D. Jackson, A.P. Mathur, Model-based security analysis of a water treatment system, in 2016 IEEE/ACM 2nd International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS) (IEEE, 2016), pp. 22–28

    Google Scholar 

  210. S. Shrivastava, G.R. MR, A. Mathur, Pcat: Plc command analysis tool for automatic incidence response in water treatment plants, in 2021 IEEE International Conference on Big Data (Big Data) (IEEE, 2021), pp. 2151–2159

    Google Scholar 

  211. A. Robles-Durazno, N. Moradpoor, J. McWhinnie, G. Russell, I. Maneru-Marin, Plc memory attack detection and response in a clean water supply system. Int. J. Crit. Infrastruct. Prot. 26, 100300 (2019)

    Article  Google Scholar 

  212. A. Agrawal, C.M. Ahmed, E.C. Chang, Poster: Physics-based attack detection for an insider threat model in a cyber-physical system, in Proceedings of the 2018 on Asia Conference on Computer and Communications Security (2018), pp. 821–823

    Google Scholar 

  213. N. Chikhalia, Y. Dhawan, Security of industrial cyberspace: Fair clustering with linear time approximation, in Handbook of Big Data Analytics and Forensics (Springer, 2022), pp. 75–88

    Google Scholar 

  214. J. Wang, J. Sun, Y. Jia, S. Qin, Z. Xu, Towards ‘verifying’ a water treatment system, in International Symposium on Formal Methods (Springer, 2018), pp. 73–92

    Google Scholar 

  215. G.R. MR, A.P. Mathur, Aicrit: A unified framework for real-time anomaly detection in water treatment plants. J. Inf. Secur. Appl. 64, 103046 (2022)

    Google Scholar 

  216. S. Uslu, D. Kaur, S.J. Rivera, A. Durresi, M. Babbar-Sebens, J.H. Tilt, A trustworthy human–machine framework for collective decision making in food–energy–water management: The role of trust sensitivity. Knowl. Based Syst. 213, 106683 (2021)

    Article  Google Scholar 

  217. K. Krithivasan, S. Pravinraj, V.S. Shankar Sriram, et al., Detection of cyberattacks in industrial control systems using enhanced principal component analysis and hypergraph-based convolution neural network (epca-hg-cnn). IEEE Trans. Ind. Appl. 56(4), 4394–4404 (2020)

    Article  Google Scholar 

  218. Q. Xu, S. Ali, T. Yue, Digital twin-based anomaly detection in cyber-physical systems, in 2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST) (IEEE, 2021), pp. 205–216

    Google Scholar 

  219. Z. Li, J. Li, Y. Wang, K. Wang, A deep learning approach for anomaly detection based on sae and lstm in mechanical equipment. Int. J. Adv. Manuf. Technol. 103(1), 499–510 (2019)

    Article  CAS  Google Scholar 

  220. M.F. Abdelaty, R.D. Corin, D. Siracusa, Daics: A deep learning solution for anomaly detection in industrial control systems. IEEE Trans. Emerg. Top. Comput. (2021)

    Google Scholar 

  221. M. Elnour, N. Meskin, K. Khan, R. Jain, A dual-isolation-forests-based attack detection framework for industrial control systems. IEEE Access 8, 36639–36651 (2020)

    Article  Google Scholar 

  222. M. Kravchik, A. Shabtai, Efficient cyber attack detection in industrial control systems using lightweight neural networks and pca. IEEE Trans. Dependable Secure Comput. (2021)

    Google Scholar 

  223. Á.L. Perales Gómez, L. Fernández Maimó, A. Huertas Celdrán, F.J. García Clemente, Madics: A methodology for anomaly detection in industrial control systems. Symmetry 12(10), 1583 (2020)

    Google Scholar 

  224. G. Zizzo, C. Hankin, S. Maffeis, K. Jones, Intrusion detection for industrial control systems: Evaluation analysis and adversarial attacks. Preprint (2019). arXiv:1911.04278

    Google Scholar 

  225. D. Shalyga, P. Filonov, A. Lavrentyev, Anomaly detection for water treatment system based on neural network with automatic architecture optimization. Preprint (2018). arXiv:1807.07282

    Google Scholar 

  226. D. Li, D. Chen, B. Jin, L. Shi, J. Goh, S.K. Ng, Mad-gan: Multivariate anomaly detection for time series data with generative adversarial networks, in International Conference on Artificial Neural Networks (Springer, 2019), pp. 703–716

    Google Scholar 

  227. K. Faber, M. Pietron, D. Zurek, Ensemble neuroevolution-based approach for multivariate time series anomaly detection. Entropy 23(11), 1466 (2021)

    Google Scholar 

  228. S. Chakraborty, A. Onuchowska, S. Samtani, W. Jank, B. Wolfram, Machine learning for automated industrial iot attack detection: an efficiency-complexity trade-off. ACM Trans. Manag. Inf. Syst. (TMIS) 12(4), 1–28 (2021)

    Google Scholar 

  229. D. Li, D. Chen, J. Goh, S.k. Ng, Anomaly detection with generative adversarial networks for multivariate time series. Preprint (2018). arXiv:1809.04758

    Google Scholar 

  230. B. Brentan, P. Rezende, D. Barros, G. Meirelles, E. Luvizotto, J. Izquierdo, Cyber-attack detection in water distribution systems based on blind sources separation technique. Water 13(6), 795 (2021)

    Google Scholar 

  231. D.T. Ramotsoela, G.P. Hancke, A.M. Abu-Mahfouz, Attack detection in water distribution systems using machine learning. HCIS 9(1), 1–22 (2019)

    Google Scholar 

  232. L. Tsiami, C. Makropoulos, Cyber-physical attack detection in water distribution systems with temporal graph convolutional neural networks. Water 13(9), 1247 (2021)

    Google Scholar 

  233. H. Mahmoud, W. Wu, M.M. Gaber, A time-series self-supervised learning approach to detection of cyber-physical attacks in water distribution systems. Energies 15(3), 914 (2022)

    Google Scholar 

  234. Y.H. Choi, A. Sadollah, J.H. Kim, Improvement of cyber-attack detection accuracy from urban water systems using extreme learning machine. Applied Sciences 10(22), 8179 (2020)

    Google Scholar 

  235. B.A. Vinatzer, L.S. Heath, H.M. Almohri, M.J. Stulberg, C. Lowe, S. Li, Cyberbiosecurity challenges of pathogen genome databases. Front. Bioeng. Biotechnol. 7, 106 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  236. J. Diggans, E. Leproust, Next steps for access to safe, secure dna synthesis. Front. Bioeng. Biotechnol. 7, 86 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  237. R. Puzis, D. Farbiash, O. Brodt, Y. Elovici, D. Greenbaum, Increased cyber-biosecurity for DNA synthesis. Nature Biotechnology 38(12), 1379–1381 (2020)

    Article  CAS  PubMed  Google Scholar 

  238. D. Farbiash, R. Puzis, Cyberbiosecurity: Dna injection attack in synthetic biology. Preprint (2020). arXiv:2011.14224

    Google Scholar 

  239. S. Mueller, On DNA signatures, their dual-use potential for gmo counterfeiting, and a cyber-based security solution. Front. Bioeng. Biotechnol. 7, 189 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  240. D. Guttieres, S. Stewart, J. Wolfrum, S.L. Springs, Cyberbiosecurity in advanced manufacturing models. Front. Bioeng. Biotechnol., 210 (2019)

    Google Scholar 

  241. Z. Li, H. Zhao, J. Shi, Y. Huang, J. Xiong, An intelligent fuzzing data generation method based on deep adversarial learning. IEEE Access 7, 49327–49340 (2019)

    Article  Google Scholar 

  242. P. Rana, L.R. Varshney, Trustworthy predictive algorithms for complex forest system decision-making. Front. Forests Global Change, 153 (2021)

    Google Scholar 

  243. A.M. George, The national security implications of cyberbiosecurity. Front. Bioeng. Biotechnol. 7, 51 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  244. X.L. Palmer, S. Karahan, Defending forward: an exploration through the lens of biocybersecurity, in ICCWS 2020 15th International Conference on Cyber Warfare and Security (Academic Conferences and Publishing Limited, 2020), p. 373

    Google Scholar 

  245. X.L. Palmer, L. Potter, S. Karahan, On the emerging area of biocybersecurity and relevant considerations, in Future of Information and Communication Conference (Springer, 2020), pp. 873–881

    Google Scholar 

  246. A.F. Markus, J.A. Kors, P.R. Rijnbeek, The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and evaluation strategies. J. Biomed. Inf. 113, 103655 (2021)

    Article  Google Scholar 

  247. A. Holzinger, C. Biemann, C.S. Pattichis, D.B. Kell, What do we need to build explainable AI systems for the medical domain? Preprint (2017). arXiv:1712.09923

    Google Scholar 

  248. M. Quiñones-Grueiro, A. Prieto-Moreno, C. Verde, O. Llanes-Santiago, Decision support system for cyber attack diagnosis in smart water networks. IFAC-PapersOnLine 51(34), 329–334 (2019)

    Article  Google Scholar 

  249. S. Adepu, A. Mathur, Using process invariants to detect cyber attacks on a water treatment system, in IFIP International Conference on ICT Systems Security and Privacy Protection (Springer, 2016), pp. 91–104

    Google Scholar 

  250. M. Macas, C. Wu, An unsupervised framework for anomaly detection in a water treatment system, in 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA) (IEEE, 2019), pp. 1298–1305

    Google Scholar 

  251. A. Deng, B. Hooi, Graph neural network-based anomaly detection in multivariate time series, in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35 (2021), pp. 4027–4035

    Google Scholar 

  252. C. Gehrmann, M. Gunnarsson, A digital twin based industrial automation and control system security architecture. IEEE Trans. Ind. Inf. 16(1), 669 (2019)

    Google Scholar 

  253. Y. Jia, J. Wang, C.M. Poskitt, S. Chattopadhyay, J. Sun, Y. Chen, Adversarial attacks and mitigation for anomaly detectors of cyber-physical systems. Int. J. Crit. Infrastruct. Prot. 34, 100452 (2021)

    Article  Google Scholar 

  254. J.H. Moon, J.H. Yu, K.A. Sohn, An ensemble approach to anomaly detection using high-and low-variance principal components. Comput. Electr. Eng. 99, 107773 (2022)

    Article  Google Scholar 

  255. R.S. Murch, W.K. So, W.G. Buchholz, S. Raman, J. Peccoud, Cyberbiosecurity: an emerging new discipline to help safeguard the bioeconomy. Front. Bioeng. Biotechnol., 39 (2018)

    Google Scholar 

  256. D.S. Schabacker, L.A. Levy, N.J. Evans, J.M. Fowler, E.A. Dickey, Assessing cyberbiosecurity vulnerabilities and infrastructure resilience. Front. Bioeng. Biotechnol. 7, 61 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  257. K. Demestichas, N. Peppes, T. Alexakis, Survey on security threats in agricultural iot and smart farming. Sensors 20(22), 6458 (2020)

    Google Scholar 

  258. S. Gurrapu, F.A. Batarseh, P. Wang, M.N.K. Sikder, N. Gorentala, M. Gopinath, Deepag: Deep learning approach for measuring the effects of outlier events on agricultural production and policy. in 2021 IEEE Symposium Series on Computational Intelligence (SSCI) (IEEE, 2021), pp. 1–8

    Google Scholar 

  259. M. Gopinath, F.A. Batarseh, J. Beckman, Machine learning in gravity models: An application to agricultural trade. Tech. rep., National Bureau of Economic Research (2020)

    Google Scholar 

  260. A. Monken, F. Haberkorn, M. Gopinath, L. Freeman, F.A. Batarseh, Graph neural networks for modeling causality in international trade, in The International FLAIRS Conference Proceedings, vol. 34 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by funding from Deloitte Touche Tohmatsu Limited.

We acknowledge the Center for Advanced Innovation in Agriculture (CAIA) at Virginia Tech and the Intelligent Systems Division (ISD) at The Hume Center for National Security and Technology, both for their support.

Additionally, a word of thanks to the members of Virginia Tech’s A3 Research Lab (https://ai.bse.vt.edu/) for their inputs and feedback. Lastly, this work would of not been possible without the involvement of Dr. Susan Duncan (may she rest in peace) – to whom we dedicate this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feras A. Batarseh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sobien, D. et al. (2023). AI for Cyberbiosecurity in Water Systems—A Survey. In: Greenbaum, D. (eds) Cyberbiosecurity. Springer, Cham. https://doi.org/10.1007/978-3-031-26034-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26034-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26033-9

  • Online ISBN: 978-3-031-26034-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics