Skip to main content

Auf dem Weg zu einer harmonisierten Methodik für die Entwicklung von sicheren und regelkonformen Open-Source-Medizinprodukten

  • Chapter
  • First Online:
Entwicklung von Open-Source-Medizinprodukten

Zusammenfassung

Technische Produkte profitieren von der Anwendung systematischer Entwurfsmethoden während ihrer Entwicklungsprozesse, da diese Methoden dazu beitragen, zeit- und kosteneffiziente Lösungen mit erweiterten Funktionen, erhöhter Sicherheit und verbesserter Zuverlässigkeit zu erzielen. Jüngste Trends wie offene Innovation, kollaboratives Engineering und die „Maker“-Bewegung verändern das traditionelle technische Design und eröffnen neue Horizonte in vielen Industriesparten, die von nutzerorientierten Designs und von der Förderung der Kreativität durch Zusammenarbeit profitieren. Der medizinische Bereich kann mit der Entstehung des Open-Source-Konzepts für medizinische Geräte in hohem Maße von den genannten Trends profitieren, wobei allerdings besondere Überlegungen angestellt werden müssen. Medizinische Geräte sind aufgrund ihrer engen Wechselwirkung mit dem menschlichen Körper und ihrer potenziellen Risiken sehr spezielle Produkte. Auch wenn offene Innovation und Open-Source-Ansätze die biomedizinische Technik in Richtung eines gerechten Zugangs zu medizinischen Technologien verändern können, sollte der Übergang von der klassischen Entwicklung von Medizinprodukten zu Open-Source-Medizinprodukten unter Berücksichtigung der Sicherheit und der Einhaltung von Regularien erfolgen. In diesem Kapitel werden moderne Methoden für die Produktentwicklung vorgestellt und Schlüsselaspekte für Open-Source-Medizinprodukte hervorgehoben, mit dem Ziel, eine harmonisierte Methodik für nutzerzentrierte, sichere und regelkonforme Open-Source-Medizintechnologien bereitzustellen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Thingiverse: Digitales Design für physische Objekte, https://www.thingiverse.com [letzter Zugriff: Januar 2020].

  2. 2.

    GrabCAD: Design Community, CAD-Bibliothek, 3D-Drucksoftware, https://grabcad.com [letzter Zugriff: Januar 2020].

  3. 3.

    FAIR: „findable, accessible, interoperable, reusable“ (auffindbar, zugänglich, interoperabel, wiederverwendbar).

Literatur

  • Abu-Faraj, Z. O. (2008). Bioengineering/biomedical engineering education and career development: Literature review, definitions and constructive recommendations. International Journal of Engineering Education, 24(5), 990–1011.

    Google Scholar 

  • Ahluwalia, A., De Maria, C., & Díaz Lantada, A. (2018a). The Kahawa declaration: A manifesto for the democratization of medical technology. Global Health Innovation, 1(1), 1–4.

    Article  Google Scholar 

  • Ahluwalia, A., De Maria, C., Madete, J., Díaz Lantada, A., Makobore, P. N., Ravizza, A., Di Pietro, L., Mridha, M., Muñoz-Guijosa, J. M., ChacónTanarro, E., & Torop, J. (2018b). Biomedical engineering project based learning: Euro-African design school focused on medical devices. International Journal of Engineering Education, 34(5), 1709–1722.

    Google Scholar 

  • Arcarisi, L., Pietro, L. D., Carbonaro, N., Tognetti, A., Ahluwalia, A., & De Maria, C. (2019). Palpreast – A new wearable device for breast self-examination. Applied Sciences, 9(3), 381.

    Article  Google Scholar 

  • Bonaccorsi, A., & Rossi, C. (2003). Why open source software can succeed. Research policy, 32(7), 1243–1258.

    Article  Google Scholar 

  • Crawley, E. F., Malmqvist, J., Östlund, S., & Brodeur, D. R. (2007). Rethinking engineering education: The CDIO approach (S. 1–286). Springer.

    Google Scholar 

  • De Graaf, E., & Kolmos, A. (2003). Characteristics of problem-based learning. International Journal of Engineering Education, 19(5), 657–662.

    Google Scholar 

  • De Maria, C., Di Pietro, L., Díaz Lantada, A., Madete, J., Makobore, P. N., Mridha, M., et al. (2018). Safe innovation: On medical device legislation in Europe and Africa. Health Policy and Technology, 7(2), 156–165.

    Article  Google Scholar 

  • Díaz Lantada, A., & De Maria, C. (2019, April). Towards open-source and collaborative project based learning in engineering education: Situation, resources and challenges. International Journal of Engineering Education, 35(5), 1279–1289.

    Google Scholar 

  • Di Pietro, L., Botte, E., Granati, R., Moroni, S., Tomasi, M., Vozzi, G., & De Maria, C. (2019, July). Teaching design standards and regulations on medical devices through a collaborative project-based learning approach. International Journal of Engineering Education, 35(6), 1803–1815.

    Google Scholar 

  • Droste, M. (2019). Bauhaus. Aktualisierte Ausgabe. Taschen.

    Google Scholar 

  • Fasterholdt, I., Lee, A., Kidholm, K., Yderstraede, K. B., & Pedersen, K. M. (2018). A qualitative exploration of early assessment of innovative medical technologies. BMC Health Services Research, 18, 837.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferretti, J., Di Pietro, L., & De Maria, C. (2017). Open-source automated external defibrillator. HardwareX, 2, 61–70.

    Article  Google Scholar 

  • Fogliatto, F., & Da Silveira, G. (Hrsg.). (2011). Mass customization (Springer Series in Advanced Manufacturing). Springer.

    Google Scholar 

  • Gao, J., & Bernard, A. (2017). An overview of knowledge sharing in new product development. International Journal of Advanced Manufacturing Technology, 94(5–8), 1545–1550.

    Google Scholar 

  • Gausemeier, J., & Moehringer, S. (2002). VDI 2206: A new guideline for the design of mechatronic systems. IFAC Proceedings, 35(2), 785–790.

    Google Scholar 

  • Gershenfeld, N. (2005). Fab: the coming revolution on your desktop-from personal computers to personal fabrication. Basic Books.

    Google Scholar 

  • Graessler, E. (2017). A new V-model for interdisciplinary product engineering. 59th Ilmenau Scientific Colloquium, TU Ilmenau.

    Google Scholar 

  • Graham, R. (2018). The global state of the art in engineering education. MIT Press.

    Google Scholar 

  • Hansen, F. (1956). Konstruktionssystematik. VEB-Verlag Technik.

    Google Scholar 

  • International Organization for Standardization. (2016). ISO 13485:2016: Medical devices – Quality management systems – Requirements for regulatory purposes. ISO.

    Google Scholar 

  • International Organization for Standardization. (2017). ISO 14971:2017: Medical devices – Application of risk management to medical devices. ISO.

    Google Scholar 

  • Jacoby, B. (1996). Service-learning in higher education: Concepts and practices. Jossey-Bass.

    Google Scholar 

  • Kaiser, W., & König, W. (2006). Geschichte des Ingenieurs. Ein Beruf in sechs Jahrtausenden. Carl Hanser.

    Google Scholar 

  • Kesselring, F. (1951). Bewertung von Konstruktionen. VDI Verlag.

    Google Scholar 

  • Kesselring, F. (1954). Technische Kompositionslehre. Springer.

    Book  Google Scholar 

  • Kuhlenkamp, A. (1971). Konstruktionslehre der Feinwerktechnik. Hanser.

    Google Scholar 

  • Larmer, J. (2014). Project-based learning vs. Problem-based learning vs. X-BL. Edutopia.

    Google Scholar 

  • Lessig, L., Cusumano, M., & Shirky, C. (2005). Perspectives on free and open source software. MIT Press.

    Google Scholar 

  • Malkin, R. A. (2007). Design of health care technologies for the developing world. Annual Review of Biomedical Engineering, 9, 567–587.

    Article  CAS  PubMed  Google Scholar 

  • Matousek, R. (1957). Konstruktionslehren des allgemeinen Maschinenbaus. Springer.

    Book  Google Scholar 

  • Mushtaq, U., & Pearce, J. M. (2018). Open source appropriate nanotechnology. In Nanotechnology and global sustainability (S. 220–245). CRC Press.

    Google Scholar 

  • Ng, P. K., & Jee, K. S. (2014). Concurrent knowledge sharing and its importance in product development. Journal of Applied Sciences, 14, 2978–2985.

    Article  Google Scholar 

  • Niemann, G. (1975). Maschinenelemente. Springer.

    Google Scholar 

  • Niezen, G., Eslambolchilar, P., & Thimbleby, H. (2016). Open-source hardware for medical devices. BMJ Innovations, 2(2), 78–83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oberloier, S., & Pearce, J. (2018). General design procedure for free and open-source hardware for scientific equipment. Designs, 2(1), 2.

    Article  Google Scholar 

  • Pahl, G., & Beitz, W. (transl. & ed. Wallace, K.). (1988). Engineering design: A systematic approach. The Design Council/Springer.

    Google Scholar 

  • Perilli, A. (2017, May 23). From creative AI to open source sculpture: How tech is changing art. It’s Nice That. https://www.itsnicethat.com/. Zugegriffen im May 2019.

  • Rautenstrauch, C., Seelmann-Eggebert, R., & Turowski, K. (Hrsg.). (2002). Moving into mass customization. Springer.

    Google Scholar 

  • Roozenburg, N., & Eeckels, J. (1995). Product design: Fundamentals and methods. Wiley.

    Google Scholar 

  • Rosenfeld Halverson, E., & Sheridan, K. M. (2014). The maker movement in education. Harvard Educational Review, 84(4), 495–504.

    Article  Google Scholar 

  • Sarmah, B., & Rahman, Z. (2017). Transforming jewellery designing: Empowering customers through crowdsourcing in India. Global Business Review, 18(5), 1325–1344.

    Article  Google Scholar 

  • Sienko, K. H., Sarvestani, A. S., & Grafman, L. (2013). Medical device compendium for the developing world: A new approach in project and service-based learning for engineering graduate students. Global Journal of Engineering Education, 15(1), 13–20.

    Google Scholar 

  • Sivarasu, S. (2019). Frugal biodesign: An approach for developing appropriate medical devices in low-resource settings. Biomedical Engineering for Africa (S. 46–54). UCT Libraries.

    Google Scholar 

  • The European Parliament and the Council of the European Union. (2017a). Regulation (EU) 2017/745 on medical devices. https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32017R0745. Zugegriffen im January 2020.

  • The European Parliament and the Council of the European Union. (2017b). Regulation (EU) 2017/746 on in vitro diagnostic medical devices. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1565171051278&uri=CELEX:32017R0746. Zugegriffen im January 2020.

  • Trimi, S., & Berbegal-Mirabent, J. (2012). Business model innovation in entrepreneurship. International Entrepreneurship and Management Journal, 8(4), 449–465.

    Article  Google Scholar 

  • Tschochner, H. (1954). Konstruieren und Gestalten. Abrißeiner Konstruktions- und Gestaltungslehre unter besonderer Berücksichtigung von Maschinenbau und Feinmechanik. Girardet.

    Google Scholar 

  • Ulrich, K., & Eppinger, S. (2007). Product design and development (4. Aufl.). Mc-Graw Hill/Irwin.

    Google Scholar 

  • UNESCO. World declaration on higher education for the twenty-first century: Vision and action, adopted by UNESCO’s World Conference on Higher Education on 9 October 1998.

    Google Scholar 

  • United Nations General Assembly. Transforming our world: The 2030 Agenda for Sustainable Development, on 21 October 2015, A/RES/70/1.

    Google Scholar 

  • Verein DeutscherIngenieure. (2004). VDI 2206: Design methodology for mechatronic systems. VDI.

    Google Scholar 

  • Wang, F. Y., Carley, K. M., Zeng, D., & Mao, W. (2007). Social computing: From social informatics to social intelligence. IEEE Intelligent Systems, 22(2), 79–83.

    Article  Google Scholar 

  • Wächtler, R. (1967). Beitrag zur Theorie des Entwickelns (Konstruierens). Feinwerktechnik, 71, 353–358.

    Google Scholar 

  • Wilkinson, M. D., et al. (2016). Comment: The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(160018), 1–9.

    Google Scholar 

  • Wu, D., Rosen, D. W., Wang, L., & Schaefer, D. (2015). Cloud-based design and manufacturing: A new paradigm in digital manufacturing and design innovation. Computer-Aided Design, 59, 1–14.

    Article  Google Scholar 

  • Yazdi, Y., & Acharya, S. (2013). A new model for graduate education and innovation in medical technology. Annals of Biomedical Engineering, 41(9), 1822–1833.

    Article  PubMed  Google Scholar 

  • Yock, P. G., et al. (2015). Biodesign: The process of innovating medical technology (2. Aufl., S. 1–952). Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Díaz Lantada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Maria, C., Díaz Lantada, A., Di Pietro, L., Ravizza, A., Ahluwalia, A. (2023). Auf dem Weg zu einer harmonisierten Methodik für die Entwicklung von sicheren und regelkonformen Open-Source-Medizinprodukten. In: Ahluwalia, A., De Maria, C., Díaz Lantada, A. (eds) Entwicklung von Open-Source-Medizinprodukten. Springer, Cham. https://doi.org/10.1007/978-3-031-26028-5_2

Download citation

Publish with us

Policies and ethics