Skip to main content

Total Arterial Revascularization, Techniques, and Results

  • Chapter
  • First Online:
Ischemic Heart Disease
  • 940 Accesses

Abstract

CABG is the most commonly performed cardiac operation worldwide with almost 400,000 surgeries per year [1], and since the dawn, it has been characterized by an internal contradiction: being the most frequently used graft, the SV is also the most prone to failure, with pathological reports of accelerated intimal hyperplasia, premature atherosclerosis, and graft thrombosis [2].

Although at its origin CABG began with the LITA [3], the SV with its technical ease of harvest, its robust handling characteristics, and its versatility as an aortocoronary graft quickly simplified the conduct of the operation and allowed for widespread reproducibility.

The good surgical common sense has historically suggested that it was better to use arteries instead of the SV as second or third graft, but notwithstanding plenty analysis conducted in much of the world reporting favorable experiences with arterial grafts over the SV, the vast majority of cardiac surgeons have underused TAR due to its greater technical complexity and the higher level of surgical commitment required, justifying the decision with the absence of scientific evidence of clinical benefits.

Currently, the vast majority of CABG surgeries around the world are carried out using LITA for LAD and additional segments of SV for the circumflex and right coronary artery [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bachar BJ, Manna B. Coronary Artery Bypass Graft. In: StatPearls. StatPearls Publishing, Treasure Island (FL); 2020.

    Google Scholar 

  2. Marti MC, Bouchardy B, Cox JN. Aorto-coronary bypass with autogenous saphenous vein grafts: histopathological aspects. Virchows Arch A Pathol Pathol Anat. 1971;352:255–66.

    Article  CAS  PubMed  Google Scholar 

  3. Vineberg A, Munro DD, Cohen H, et al. Four years’ clinical experience with internal mammary artery implantation in the treatment of human coronary artery insufficiency including additional experimental studies. J Thorac Surg. 1955;29:1–32. discussion 32-6

    Article  CAS  PubMed  Google Scholar 

  4. Schwann TA, Habib RH, Wallace A, et al. Operative Outcomes of Multiple-Arterial Versus Single-Arterial Coronary Bypass Grafting. Ann Thorac Surg. 2018;105:1109–20.

    Article  PubMed  Google Scholar 

  5. Carrel AVIII. On the Experimental Surgery of the Thoracic Aorta and Heart. Ann Surg. 1910;52:83–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kolesov VI, Potashov LV. Surgery of coronary arteries [in Russian]. Eksp Khir Anesteziol. 1965;10(2):3–8.

    CAS  PubMed  Google Scholar 

  7. Favaloro RG. Saphenous vein autograft replacement of severe segmental coronary artery occlusion: operative technique. Ann Thorac Surg. 1968;5:334–9.

    Article  CAS  PubMed  Google Scholar 

  8. Loop FD, Lytle BW, Cosgrove DM, et al. Influence of the internal-mammary-artery graft on 10-year survival and other cardiac events. New Engl J Med. 1986;314:1–6.

    Article  CAS  PubMed  Google Scholar 

  9. Suzuki A, Kay EB, Hardy JD. Direct anastomosis of the bilateral internal mammary artery to the distal coronary artery, without a magnifier, for severe diffuse coronary atherosclerosis. Circulation. 1973;48(1):III190–7.

    CAS  PubMed  Google Scholar 

  10. Lytle BW, Blackstone EH, Loop FD, et al. Two internal thoracic artery grafts are better than one. J Thorac Cardiovasc Surg. 1999;117:855–72.

    Article  CAS  PubMed  Google Scholar 

  11. Kouchoukos NT, Wareing TH, Murphy SF, et al. Risks of bilateral internal mammary artery bypass grafting. Ann Thorac Surg. 1990;49:210–7.

    Article  CAS  PubMed  Google Scholar 

  12. Curtis JJ, Stoney WS, Alford WC Jr, et al. Intimal hyperplasia. A cause of radial artery aortocoronary bypass graft failure. Ann Thorac Surg. 1975;20:628–35.

    Article  CAS  PubMed  Google Scholar 

  13. Acar C, Jebara VA, Portoghese M, et al. Revival of the radial artery for coronary artery bypass grafting. Ann Thorac Surg. 1992;54:652–9.

    Article  CAS  PubMed  Google Scholar 

  14. Tranbaugh RF, Dimitrova KR, Lucido DJ, et al. The second best arterial graft: a propensity analysis of the radial artery versus the free right internal thoracic artery to bypass the circumflex coronary artery. J Thorac Cardiovasc Surg. 2014;147:133–42.

    Article  PubMed  Google Scholar 

  15. Suma H, Tanabe H, Takahashi A, Horii T, Isomura T, Hirose H, et al. Twenty years experience with the gastroepiploic artery graft for CABG. Circulation. 2007;116(11 Suppl):I188–91.

    PubMed  Google Scholar 

  16. D’Agostino RS, et al. The society of thoracic surgeons adult cardiac surgery database: 2018 update on outcomes and quality. Ann Thorac Surg. 2018;105:1523.

    Article  Google Scholar 

  17. Tatoulis J, Wynne R, Skillington PD, et al. Total arterial revascularization: achievable and prognostically effective—a multicenter analysis. Ann Thorac Surg. 2015;100:126875.

    Article  Google Scholar 

  18. Gaudino M, Chikwe J, Falk V, Lawton JS, Puskas JD, Taggart DP. Transatlantic editorial: the use of multiple arterial grafts for coronary revascularization in Europe and North America. Eur J Cardiothorac Surg. 2020;57(6):10321037.

    Article  Google Scholar 

  19. Lytle BW, Blackstone EH, Sabik JF, et al. The effect of bilateral internal thoracic artery grafting on survival during 20 postoperative years. Ann Thorac Surg. 2004;78:2005–12. discussion 2012-4

    Article  PubMed  Google Scholar 

  20. Takagi H, Goto SN, Watanabe T, et al. A meta-analysis of adjusted hazard ratios from 20 observational studies of bilateral versus single internal thoracic artery coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2014;148:1282–90.

    Article  PubMed  Google Scholar 

  21. Goldstone AB, Chiu P, Baiocchi M, Wang H, Lingala B, Boyd JH, et al. Second arterial versus venous conduits for multivessel coronary artery bypass surgery in California. Circulation. 2018;137:1698–707.

    Article  PubMed  Google Scholar 

  22. Samadashvili Z, Sundt TM, Wechsler A, Chikwe J, Adams DH, Smith CR, et al. Multiple versus single arterial coronary bypass graft surgery for multivessel disease. J Am Coll Cardiol. 2019;74:1275–85.

    Article  PubMed  Google Scholar 

  23. Pu A, Ding L, Shin J, Price J, Skarsgard P, Wong DR, et al. Long-term outcomes of multiple arterial coronary artery bypass grafting: a population-based study of patients in British Columbia. JAMA Cardiol. 2017;2:1187–96.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Taggart DP, Benedetto U, Gerry S, et al. Bilateral versus single internal-thoracic-artery grafts at 10 years. N Engl J Med. 2019;380:437–46.

    Article  PubMed  Google Scholar 

  25. Gaudino M, Di Franco A, Rahouma M, et al. Unmeasured confounders in observational studies comparing bilateral versus single internal thoracic artery for coronary artery bypass grafting: a meta-analysis. J Am Heart Assoc. 2018;7(1):e008010.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jayakumar S, Gasparini M, Treasure T, et al. Cardiothoracic Trainees Research Collaborative. How do surgeons decide? Conduit choice in coronary artery bypass graft surgery in the UK. Interact CardioVasc Thorac Surg. 2019;29:179–86.

    Article  PubMed  Google Scholar 

  27. ESC/EACTS Task Force on Myocardial Revascularization. Eur J Cardio-Thorac Surg 38, S1 (2010) S1 S52.

    Google Scholar 

  28. Spadaccio C, Glineur D, Barbato E, et al. Fractional flow reserve-based coronary artery bypass surgery: current evidence and future directions. JACC Cardiovasc Interv. 2020;13(9):1086–96.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nakajima H, Kobayashi J, Toda K. A 10-year angiographic follow-up of competitive flow in sequential and composite arterial grafts. Eur J Cardiothorac Surg. 2011;40(2):399–404.

    PubMed  Google Scholar 

  30. Royse AG, Brennan A, Pawns Z, et al. Patency when grafted to coronary stenosis more than 50% in LIMA-RA-Y grafts. Heart, Lung and Circulation. 2020;29(7):1101–7.

    Article  PubMed  Google Scholar 

  31. Gaudino M, Alessandrini F, Pragliola C, et al. Effect of target artery location and severity of stenosis on mid-term patency of aorta-anastomosed vs. internal thoracic artery-anastomosed radial artery grafts. Eur J Cardiothorac Surg. 2004;25(3):4248.

    Article  Google Scholar 

  32. Benedetto U, Altman DG, Gerry S, et al. Arterial Revascularization Trial investigators. Pedicled and skeletonized single and bilateral internal thoracic artery grafts and the incidence of sternal wound complications: Insights from the Arterial Revascularization Trial. J Thorac Cardiovasc Surg. 2016;152(1):270–6.

    Article  PubMed  Google Scholar 

  33. Boodhwani M, Lam BK, Nathan HJ, et al. Skeletonized internal thoracic artery harvest reduces pain and dysesthesia and improves sternal perfusion after coronary artery bypass surgery: a randomized, double-blind, within-patient comparison. Circulation. 2006;114(8):766–73.

    Article  PubMed  Google Scholar 

  34. Lamy A, Browne A, Sheth T, et al. COMPASS Investigators. Skeletonized vs pedicled internal mammary artery graft harvesting in coronary artery bypass surgery: a post hoc analysis from the COMPASS Trial. JAMA Cardiol. 2021;6(9):1042–9.

    Article  PubMed  Google Scholar 

  35. Gaudino M, Audisio K, Rahouma M, et al; the ART Investigators. Comparison of long-term clinical outcomes of skeletonized vs pedicled internal thoracic artery harvesting techniques in the Arterial Revascularization Trial. JAMA Cardiol. Published online September 29, 2021.

    Google Scholar 

  36. Neumann F-J, Sousa-Uva M, Ahlsson A, et al. ESC/EACTS guidelines on myocardial revascularization. Eur Heart J. 2019;40(2):87165.

    Article  Google Scholar 

  37. Gaudino M, Benedetto U, Fremes S, et al. Association of Radial Artery Graft vs Saphenous Vein Graft With Long-term Cardiovascular Outcomes Among Patients Undergoing Coronary Artery Bypass Grafting. A Systematic Review and Meta-analysis. JAMA. 2020;324(2):179–87.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gaudino M, Lorusso R, Rahouma M, et al. Radial Artery Versus Right Internal Thoracic Artery Versus Saphenous Vein as the Second Conduit for Coronary Artery Bypass Surgery: A Network Meta-Analysis of Clinical Outcomes. J Am Heart Assoc. 2019;8:e010839.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Buxton BF, Hayward PA, Raman J, et al. Long-Term Results of the RAPCO Trials. Circulation. 2020;142:1330–8.

    Article  PubMed  Google Scholar 

  40. Lemma M, Gelpi G, Mangini A, et al. Myocardial Revascularization With Multiple Arterial Grafts: Comparison Between the Radial Artery and the Right Internal Thoracic Artery. Ann Thorac Surg. 2001;71:1969–73.

    Article  CAS  PubMed  Google Scholar 

  41. Tavilla G, Bruggemans EF, Putter H. Twenty-year outcomes of coronary artery bypass grafting utilizing 3 in situ arterial grafts. J Thorac Cardiovasc Surg. 2019;157(6):2228–36.

    Article  PubMed  Google Scholar 

  42. Mills NL. Physiologic and technical aspects of internal mammary artery coronary artery bypass grafts. Cardiothorac Surg. 1982;48:119.

    Google Scholar 

  43. Tector AJ, Amundsen S, Schmahl TM, Kress DC, Peter M. Total revascularization with T grafts. Ann Thorac Surg. 1994;57:339.

    Article  Google Scholar 

  44. Royse AG, Brennan AP, Jared Ou-Young J, et al. 21-Year survival of left internal mammary artery radial arteryY graft. J Am Coll Cardiol. 2018;72:133240.

    Article  Google Scholar 

  45. Walpoth BH, Schmid M, Schwab A, et al. Vascular adaptation of the internal thoracic artery graft early and late after bypass surgery. J Thorac Cardiovasc Surg. 2008;136:87683.

    Article  Google Scholar 

  46. Gurne O, Chenu P, Polidori C, et al. Functional evaluation of internal Mammary artery bypass grafts in the early and late postoperative periods. J Am Coll Cardiol. 1995;25:11208.

    Article  Google Scholar 

  47. Lemma M, Innorta A, Pettinari M, et al. Flow dynamics and wall shear stress in the left internal thoracic artery: composite arterial graft versus single graft. Eur J Cardiothorac Surg. 2006;29:4738.

    Article  Google Scholar 

  48. Lemma M, Mangini A, Gelpi G, et al. Is it better to use the radial artery as a composite graft? Clinical and angiographic results of aorto-coronary versus Y-graft. Eur J Cardiothorac Surg. 2004;26:110–7.

    Article  PubMed  Google Scholar 

  49. Börgermann J, Hakim K, Renner A, et al. Clampless off-pump versus conventional coronary artery revascularization: a propensity score analysis of 788 patients. Circulation. 2012;126(suppl 1):S176–82.

    PubMed  Google Scholar 

  50. Zhao DF, Edelman JJ, Seco M, et al. Coronary artery bypass grafting with and without manipulation of the ascending aorta: a network meta-analysis. J Am Coll Cardiol. 2017;69:924–36.

    Article  PubMed  Google Scholar 

  51. He GW, Yang CQ, Starr A. Overview of the nature of vasoconstriction in arterial grafts for coronary operations. Ann Thorac Surg. 1995;59:676–83.

    Article  CAS  PubMed  Google Scholar 

  52. Fonseca DA, Entunes PE, Cotrim MD. Endothelium-dependent vasoactivity of the human internal mammary artery. Coronary Artery Disease. 2014;25:266–74.

    Article  PubMed  Google Scholar 

  53. Lorusso R, Crudeli E, Lucà F, et al. Refractory spasm of coronary arteries and grafted conduits after isolated coronary artery bypass surgery. Ann Thorac Surg. 2012;93(2):545–51.

    Article  PubMed  Google Scholar 

  54. He GW, Taggart DP. Antispastic management in arterial grafts in coronary artery bypass grafting surgery. The Annals of thoracic surgery. 2016;102(2):659–68.

    Article  PubMed  Google Scholar 

  55. Gaudino M, Taggart D, Fremes S. The ROMA trial why it is needed. Curt Op Cardiol. 2018;33(6):622–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Lemma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lemma, M. (2023). Total Arterial Revascularization, Techniques, and Results. In: Concistrè, G. (eds) Ischemic Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-25879-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25879-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25878-7

  • Online ISBN: 978-3-031-25879-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics