Skip to main content

Graft Materials, Harvesting Methods, and Treatment of Grafts in Surgical Myocardial Revascularization

  • Chapter
  • First Online:
Ischemic Heart Disease
  • 833 Accesses

Abstract

Coronary artery bypass grafting (CABG) remains the “holy grail” of revascularization for stable multivessel coronary artery disease (CAD) [1, 2]. The most widely used conduits are autologous internal thoracic arteries, radial arteries, and saphenous veins, which provide excellent mechanical stability and natural antithrombogenicity [3]. Only simple search on PubMed Central gives us an idea on how many articles had been published on a single argument of this chapter since 60s of the last century (see Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CABG:

Coronary artery bypass grafting

CAD:

Coronary artery disease

ePTFE:

Extended polytetrafluoroethylene

EVH:

Endoscopic vein harvesting

EC:

Endothelial cells

GVS:

Great saphenous vein

OVH:

Open vein harvesting

OM:

Obtuse margin branch

References

  1. Neumann F-J, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. European Heart Journal. Available from: https://academic.oup.com/eurheartj/advance-article/doi/10.1093/eurheartj/ehy394/5079120

  2. 2021 ACC/AHA/SCAI guideline for coronary artery revascularization: A report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines | journal of the American College of Cardiology. Available from: https://www.jacc.org/doi/10.1016/j.jacc.2021.09.006?_ga=2.113540548.255118602.1643044109-1910640928.1643044109

  3. Angelini GD, Newby AC. The future of saphenous vein as a coronary artery bypass conduit. European Heart Journal. 1989;10(3):273–80. https://doi.org/10.1093/oxfordjournals.eurheartj.a059476.

    Article  CAS  PubMed  Google Scholar 

  4. Vineberg A, Miller G. Treatment of coronary insufficiency. Canadian Medical Association Journal. 1951;64(3):204–10. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1821866/

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Otsuka F, Yahagi K, Sakakura K, Virmani R. Why is the mammary artery so special and what protects it from atherosclerosis? Annals of Cardiothoracic Surgery. 2013;2(4):519–26. https://doi.org/10.3978/j.issn.2225-319X.2013.07.06.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lamy A, Browne A, Sheth T, Zheng Z, Dagenais F, Noiseux N, et al. Skeletonized vs Pedicled Internal Mammary Artery Graft Harvesting in Coronary Artery Bypass Surgery: A Post Hoc Analysis From the COMPASS Trial. JAMA cardiology. 2021; https://doi.org/10.1001/jamacardio.2021.1686.

  7. Gaudino M, Audisio K, Rahouma M, Chadow D, Cancelli G, Soletti GJ, et al. Comparison of Long-term Clinical Outcomes of Skeletonized vs Pedicled Internal Thoracic Artery Harvesting Techniques in the Arterial Revascularization Trial. JAMA cardiology. 2021;6(12):1380–6. https://doi.org/10.1001/jamacardio.2021.3866.

    Article  PubMed  Google Scholar 

  8. Dregelid E, Heldal K, Resch F, Stangeland L, Breivik K, Svendsen E. Dilation of the internal mammary artery by external and intraluminal papaverine application. The Journal of Thoracic and Cardiovascular Surgery. 1995;110(3):697–703. Available from: https://www.sciencedirect.com/science/article/pii/S002252239570101X

    Article  CAS  PubMed  Google Scholar 

  9. Lysenko AV, Bedzhanyan AL, Lednev PV, Salagaev GI, Belov YV. Endoscopic harvesting of internal mammary artery for coronary artery bypass grafting. Khirurgiia. 2018;11:96–9. https://doi.org/10.17116/hirurgia201811196.

    Article  Google Scholar 

  10. Hemli JM, Henn LW, Panetta CR, Suh JS, Shukri SR, Jennings JM, et al. Defining the learning curve for robotic-assisted endoscopic harvesting of the left internal mammary artery. Innovations (Philadelphia, PA). 2013 Oct;8(5):353–8. https://doi.org/10.1097/IMI.0000000000000017.

    Article  PubMed  Google Scholar 

  11. Valdis M, Chu MWA, Schlachta CM, Kiaii B. Validation of a Novel Virtual Reality Training Curriculum for Robotic Cardiac Surgery: A Randomized Trial. Innovations (Philadelphia, PA). 2015 Dec;10(6):383–8. https://doi.org/10.1097/IMI.0000000000000222.

    Article  PubMed  Google Scholar 

  12. Buxton BF, Ruengsakulrach P, Fuller J, Rosalion A, Reid CM, Tatoulis J. The right internal thoracic artery graft–benefits of grafting the left coronary system and native vessels with a high grade stenosis. European Journal of Cardio-Thoracic Surgery: Official Journal of the European Association for Cardio-Thoracic Surgery. 2000;18(3):255–61. https://doi.org/10.1016/s1010-7940(00)00527-3.

    Article  CAS  PubMed  Google Scholar 

  13. Brown JA, Sultan I. Just go with the Flow: Coronary Targets may Dictate Right Internal Mammary Artery Patency More than Inflow Configuration. The Annals of Thoracic Surgery. 2021; https://doi.org/10.1016/j.athoracsur.2021.09.076.

  14. Margaryan R, Latta DD, Bianchi G, Martini N, Gori A, Solinas M. Double mammary in situ: Predicting feasibility of right mammary artery in situ for circumflex coronary artery system. medRxiv. 2021.; Available from: https://www.medrxiv.org/content/early/2021/09/04/2020.12.05.20243964

  15. Lytle BW, Blackstone EH, Loop FD, Houghtaling PL, Arnold JH, Akhrass R, et al. Two internal thoracic artery grafts are better than one. The Journal of Thoracic and Cardiovascular Surgery. 1999;117(5):855–72. https://doi.org/10.1016/S0022-5223(99)70365-X.

    Article  CAS  PubMed  Google Scholar 

  16. Bakaeen FG, Ravichandren K, Blackstone EH, Houghtaling PL, Soltesz EG, Johnston DR, et al. Coronary Artery Target Selection and Survival After Bilateral Internal Thoracic Artery Grafting. Journal of the American College of Cardiology. 2020;75(3):258–68. https://doi.org/10.1016/j.jacc.2019.11.026.

    Article  PubMed  Google Scholar 

  17. Lytle BW, Blackstone EH, Sabik JF, Houghtaling P, Loop FD, Cosgrove DM. The effect of bilateral internal thoracic artery grafting on survival during 20 postoperative years. The Annals of Thoracic Surgery. 2004;78(6):1. https://doi.org/10.1016/j.athoracsur.2004.05.070.

    Article  Google Scholar 

  18. Tarui T, Ishikawa N, Watanabe G. A Novel Robotic Bilateral Internal Mammary Artery Harvest Using Double Docking Technique for Coronary Artery Bypass Grafting. Innovations (Philadelphia, Pa). 2017;12(1):74–6. https://doi.org/10.1097/IMI.0000000000000331.

    Article  PubMed  Google Scholar 

  19. Van Linden A, Hecker F, Lehmann-Grube J, Arsalan M, Richter M, Matzke B, et al. Randomized Trial of 2 Endoscopic Radial Artery Harvesting Devices-Immunofluorescence Assessment. The Annals of Thoracic Surgery. 2020;110(3):897–902. https://doi.org/10.1016/j.athoracsur.2019.12.063.

    Article  PubMed  Google Scholar 

  20. Angelini GD, Johnson T, Culliford L, Murphy G, Ashton K, Harris T, et al. Comparison of alternate preparative techniques on wall thickness in coronary artery bypass grafts: The HArVeST randomized controlled trial. Journal of Cardiac Surgery. 2021;36(6):1985–95. https://doi.org/10.1111/jocs.15477.

    Article  PubMed  Google Scholar 

  21. Dreifaldt M, Mannion JD, Geijer H, Lidén M, Bodin L, Souza D. The no-touch saphenous vein is an excellent alternative conduit to the radial artery 8 years after coronary artery bypass grafting: A randomized trial. The Journal of Thoracic and Cardiovascular Surgery. 2021;161(2):624–30. https://doi.org/10.1016/j.jtcvs.2019.09.177.

    Article  CAS  PubMed  Google Scholar 

  22. Mubarak Y, Abdeljawad A. Leg Wound Complications: A Comparison Between Endoscopic and Open Saphenous Vein Harvesting Techniques. The Heart Surgery Forum. 2021;24(4):E604–10. https://doi.org/10.1532/hsf.3915.

    Article  PubMed  Google Scholar 

  23. Zenati MA, Bhatt DL, Bakaeen FG, Stock EM, Biswas K, Gaziano JM, et al. Randomized Trial of Endoscopic or Open Vein-Graft Harvesting for Coronary-Artery Bypass. The New England Journal of Medicine. 2019;380(2):132–41. https://doi.org/10.1056/NEJMoa1812390.

    Article  PubMed  Google Scholar 

  24. Wijnberg DS, Boeve WJ, Ebels T, van Gelder IC, van den Toren EW, Lie KI, et al. Patency of arm vein grafts used in aorto-coronary bypass surgery. European Journal of Cardio-Thoracic Surgery: Official Journal of the European Association for Cardio-Thoracic Surgery. 1990;4(9):510–3. https://doi.org/10.1016/1010-7940(90)90176-z.

    Article  CAS  PubMed  Google Scholar 

  25. Tai NR, Salacinski HJ, Edwards A, Hamilton G, Seifalian AM. Compliance properties of conduits used in vascular reconstruction. The British Journal of Surgery. 2000;87(11):1516–24. https://doi.org/10.1046/j.1365-2168.2000.01566.x.

    Article  CAS  PubMed  Google Scholar 

  26. Berger K, Sauvage LR, Rao AM, Wood SJ. Healing of arterial prostheses in man: its incompleteness. Annals of Surgery. 1972;175(1):118–27. https://doi.org/10.1097/00000658-197201000-00018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xue L, Greisler HP. Biomaterials in the development and future of vascular grafts. Journal of Vascular Surgery. 2003;37(2):472–80. https://doi.org/10.1067/mva.2003.88.

    Article  PubMed  Google Scholar 

  28. Soldani G, Losi P, Bernabei M, Burchielli S, Chiappino D, Kull S, et al. Long term performance of small-diameter vascular grafts made of a poly(ether)urethane-polydimethylsiloxane semi-interpenetrating polymeric network. Biomaterials. 2010;31(9):2592–605. https://doi.org/10.1016/j.biomaterials.2009.12.017.

    Article  CAS  PubMed  Google Scholar 

  29. Sauvage LR, Schloemer R, Wood SJ, Logan G. Successful interposition synthetic graft between aorta and right coronary artery. Angiographic follow-up to sixteen months. The Journal of Thoracic and Cardiovascular Surgery. 1976;72(3):418–21.

    Article  CAS  PubMed  Google Scholar 

  30. Hallman GL, Cooley DA, Mcnamara DG, Latson JR. Single Left Coronary Artery with Fistula to Right Ventricle: Reconstruction of Two-Coronary System with Dacron Graft. Circulation. 1965;32:293–7. https://doi.org/10.1161/01.cir.32.2.293.

    Article  CAS  PubMed  Google Scholar 

  31. Cooley DA, Hallman GL, Bloodwell RD. Definitive surgical treatment of anomalous origin of left coronary artery from pulmonary artery: indications and results. The Journal of Thoracic and Cardiovascular Surgery. 1966;52(6):798–808.

    Article  CAS  PubMed  Google Scholar 

  32. Silver GM, Katske GE, Stutzman FL, Wood NE. Umbilical vein for aortocoronary bypass. Angiology. 1982;33(7):450–3. https://doi.org/10.1177/000331978203300704.

    Article  CAS  PubMed  Google Scholar 

  33. Vrandecic MO. New graft for the surgical treatment of small vessel diseases. The Journal of Cardiovascular Surgery. 1987;28(6):711–4.

    CAS  PubMed  Google Scholar 

  34. Perloff LJ, Christie BA, Ketharanathan V, Field PL, Milne PY, MacLeish DG, et al. A new replacement for small vessels. Surgery. 1981;89(1):31–41.

    CAS  PubMed  Google Scholar 

  35. Suma H, Wanibuchi Y, Terada Y, Fukuda S, Saito T, Isshiki T, et al. Bovine internal thoracic artery graft. Successful use at urgent coronary bypass surgery. The Journal of Cardiovascular Surgery. 1991;32(2):268–70.

    CAS  PubMed  Google Scholar 

  36. Mitchell IM, Essop AR, Scott PJ, Martin PG, Gupta NK, Saunders NR, et al. Bovine internal mammary artery as a conduit for coronary revascularization: long-term results. The Annals of Thoracic Surgery. 1993;55(1):120–2. https://doi.org/10.1016/0003-4975(93)90485-z.

    Article  CAS  PubMed  Google Scholar 

  37. Tomizawa Y, Moon MR, DeAnda A, Castro LJ, Kosek J, Miller DC. Coronary bypass grafting with biological grafts in a canine model. Circulation. 1994;90(5 Pt 2):II160–6.

    CAS  PubMed  Google Scholar 

  38. Chikwe J, Adams DH. State-of-the-art revascularization. Journal of the American College of Cardiology. 2020;75(3):269–72. Available from: https://www.jacc.org/doi/10.1016/j.jacc.2019.12.005

    Article  PubMed  Google Scholar 

  39. Martínez-González B, Reyes-Hernández CG, Quiroga-Garza A, Rodríguez-Rodríguez VE, Esparza-Hernández CN, Elizondo-Omaña RE, et al. Conduits used in coronary artery bypass grafting: A review of morphological studies. Annals of Thoracic and Cardiovascular Surgery. 2017;23(2):55–65. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5422630/

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahk Margaryan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Margaryan, R. (2023). Graft Materials, Harvesting Methods, and Treatment of Grafts in Surgical Myocardial Revascularization. In: Concistrè, G. (eds) Ischemic Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-25879-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25879-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25878-7

  • Online ISBN: 978-3-031-25879-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics