Skip to main content

Percutaneous Myocardial Revascularization

  • Chapter
  • First Online:
Ischemic Heart Disease

Abstract

Since the first PTCA performed by Andreas Grüntzig in 1977, the devices and techniques have developed at a remarkable pace, allowing to achieve high success rates and making interventional cardiology a milestone in myocardial revascularization. The use of radial access made the procedures more comfortable and safer for the patients. The advances in technology also helped operators to treat highly difficult coronary artery disease including calcified lesions, bifurcations, and chronic total occlusions. Several studies have been published comparing percutaneous and surgical revascularization in complex scenarios such as LM and multivessel disease. As a matter of fact, percutaneous myocardial revascularization techniques have revolutionized the natural history of ischemic heart disease. This chapter provides an overview of technologies and techniques in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Serruys PW, Ono M, Garg S, et al. Percutaneous coronary revascularization: JACC Historical breakthroughs in perspective. J Am Coll Cardiol. 2021;78:384–407.

    Article  PubMed  Google Scholar 

  2. George CJ, Baim DS, Brinker JA, et al. One-year follow-up of the stent restenosis (STRESS I) study. Am J Cardiol. 1998;81:860–5.

    Article  CAS  PubMed  Google Scholar 

  3. Serruys PW, de Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, Emanuelsson H, Marco J, Legrand V, Materne P, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent study group. N Engl J Med. 1994;331:389–94.

    Article  Google Scholar 

  4. Mehta SR, Yusuf S, Peters RJG, et al. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study. Lancet. 2001;358:527–33.

    Article  CAS  PubMed  Google Scholar 

  5. Steinhubl SR, Berger PB, Tift Mann J, Fry ETA, DeLago A, Wilmer C, Topol EJ, CInvestigators. Early and sustained dual Oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. Journal of American Medical Association. 2002;288:2411–20.

    Article  CAS  Google Scholar 

  6. Morice M-C, Serruys PW, Sousa JE, Fajadet J, Hayashi EB, Perin M, Colombo A, Schuler G, Barragan P, Guagliumi G, Molnàr F, Robert Falotico RSGroup. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary Revascularization. N Engl J Med. 2002;346:1773–80.

    Article  CAS  PubMed  Google Scholar 

  7. Piedimonte G, Bertagnin E, Castellana C, et al. Ultrasound versus fluoroscopy-guided femoral access for percutaneous coronary intervention of chronic total occlusions: insights from FOUND BLOOD CTO registry. Cardiovasc Revasc Med. 2021; https://doi.org/10.1016/j.carrev.2021.08.024.

  8. Vavalle JP, Rao S, v. The association between the transradial approach for percutaneous coronary interventions and bleeding. J Invasive Cardiol. 2009:21.

    Google Scholar 

  9. Kern MJ. Cardiac catheterization on the road less traveled: navigating the radial versus femoral debate. JACC Cardiovasc Interv. 2009:2. https://doi.org/10.1016/j.jcin.2009.08.017.

  10. Andò G, Porto I, Montalescot G, et al. Radial access in patients with acute coronary syndrome without persistent ST-segment elevation: systematic review, collaborative meta-analysis, and meta-regression. Int J Cardiol. 2016:222. https://doi.org/10.1016/j.ijcard.2016.07.228.

  11. Jolly SS, Amlani S, Hamon M, Yusuf S, Mehta SR. Radial versus femoral access for coronary angiography or intervention and the impact on major bleeding and ischemic events: a systematic review and meta-analysis of randomized trials. Am Heart J. 2009:157. https://doi.org/10.1016/j.ahj.2008.08.023.

  12. Jolly SS, Yusuf S, Cairns J, et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet (London, England). 2011:377. https://doi.org/10.1016/S0140-6736(11)60404-2.

  13. Valgimigli M, Frigoli E, Leonardi S, et al. Radial versus femoral access and bivalirudin versus unfractionated heparin in invasively managed patients with acute coronary syndrome (MATRIX): final 1-year results of a multicentre, randomised controlled trial. Lancet. 2018;392:835–48.

    Article  CAS  PubMed  Google Scholar 

  14. Cortese B, di Palma G, Guimaraes MG, et al. Drug-coated balloon versus drug-eluting stent for small coronary vessel disease: PICCOLETO II randomized clinical trial. JACC Cardiovasc Interv. 2020:13. https://doi.org/10.1016/j.jcin.2020.08.035.

  15. Holmes DR, Leon MB, Moses JW, et al. Analysis of 1-year clinical outcomes in the SIRIUS trial. Circulation. 2004:109. https://doi.org/10.1161/01.CIR.0000112572.57794.22.

  16. Stone GW, Ellis SG, Cox DA, et al. One-year clinical results with the slow-release, polymer-based, paclitaxel-eluting TAXUS stent: the TAXUS-IV trial. Circulation. 2004:109. https://doi.org/10.1161/01.CIR.0000127110.49192.72.

  17. Kirtane AJ, Leon MB, Ball MW, et al. The “final” 5-year follow-up from the ENDEAVOR IV trial comparing a Zotarolimus-eluting stent with a paclitaxel-eluting stent. 2013.

    Book  Google Scholar 

  18. Iqbal J, Serruys PW, Silber S, et al. Comparison of zotarolimus-and everolimus-eluting coronary stents: final 5-year report of the RESOLUTE all-comers trial. Circ Cardiovasc Interv. 2015:8. https://doi.org/10.1161/CIRCINTERVENTIONS.114.002230.

  19. Onuma Y, Miquel-Hebert K, Serruys PW. Five-year long-term clinical follow-up of the XIENCE V everolimus-eluting coronary stent system in the treatment of patients with de novo coronary artery disease: the SPIRIT II trial. EuroIntervention. 2013:8. https://doi.org/10.4244/EIJV8I9A161.

  20. Stone GW, Midei M, Newman W, et al. Randomized comparison of everolimus-eluting and paclitaxel-eluting stents: two-year clinical follow-up from the clinical evaluation of the Xience V Everolimus eluting coronary stent system in the treatment of patients with de novo native coronary artery lesions (SPIRIT) III trial. Circulation. 2009:119. https://doi.org/10.1161/CIRCULATIONAHA.108.803528.

  21. Stone GW, Rizvi A, Newman W, et al. Everolimus-eluting versus paclitaxel-eluting stents in coronary artery disease. N Engl J Med. 2010:362. https://doi.org/10.1056/NEJMoa0910496.

  22. Kereiakes DJ, Meredith IT, Windecker S, et al. Efficacy and safety of a novel bioabsorbable polymer-coated, everolimus-eluting coronary stent: the EVOLVE II randomized trial. Circ Cardiovasc Interv. 2015:8. https://doi.org/10.1161/CIRCINTERVENTIONS.114.002372.

  23. Valgimigli M, Frigoli E, Heg D, et al. Dual antiplatelet therapy after PCI in patients at high bleeding risk. N Engl J Med. 2021;385:1643–55.

    Article  CAS  PubMed  Google Scholar 

  24. Hong S-J, Kim J-S, Hong SJ, et al. 1-month dual-antiplatelet therapy followed by aspirin monotherapy after polymer-free drug-coated stent implantation. J Am Coll Cardiol Intv. 2021;14:1801–11.

    Article  Google Scholar 

  25. Mehran R, Cao D, Angiolillo DJ, et al. 3- or 1-month DAPT in patients at high bleeding risk undergoing Everolimus-eluting stent implantation. J Am Coll Cardiol Intv. 2021;14:1870–83.

    Article  Google Scholar 

  26. Windecker S, Latib A, Kedhi E, et al. Polymer-based or polymer-free stents in patients at high bleeding risk. N Engl J Med. 2020;382:1208–18.

    Article  CAS  PubMed  Google Scholar 

  27. Stone GW, Kimura T, Gao R, et al. Time-varying outcomes with the absorb bioresorbable vascular scaffold during 5-year follow-up. JAMA Cardiol. 2019:4. https://doi.org/10.1001/jamacardio.2019.4101.

  28. Wykrzykowska JJ, Kraak RP, Hofma SH, et al. Bioresorbable scaffolds versus metallic stents in routine PCI. N Engl J Med. 2017:376. https://doi.org/10.1056/NEJMoa1614954.

  29. Sorrentino S, Giustino G, Mehran R, et al. Everolimus-eluting bioresorbable scaffolds versus Everolimus-eluting metallic stents. J Am Coll Cardiol. 2017:69. https://doi.org/10.1016/j.jacc.2017.04.011.

  30. Bourassa MG. The history of cardiac catheterization. Can J Cardiol. 2005;21

    Google Scholar 

  31. Tobis JM, Mallery J, Mahon D, et al. Intravascular ultrasound imaging of human coronary arteries in vivo. Analysis of tissue characterizations with comparison to in vitro histological specimens. Circulation. 1991:83. https://doi.org/10.1161/01.cir.83.3.913.

  32. St Goar FG, Pinto FJ, Alderman EL, Fitzgerald PJ, Stadius ML, Popp RL. Intravascular ultrasound imaging of angiographically normal coronary arteries: an in vivo comparison with quantitative angiography. J Am Coll Cardiol. 1991:18. https://doi.org/10.1016/0735-1097(91)90753-v.

  33. di Mario C, Görge G, Peters R, et al. Clinical application and image interpretation in intracoronary ultrasound. Study group on intracoronary imaging of the working Group of Coronary Circulation and of the subgroup on intravascular ultrasound of the working Group of Echocardiography of the European Society of Cardiology. Eur Heart J. 1998:19. https://doi.org/10.1053/euhj.1996.0433.

  34. Mintz GS, Nissen SE, Anderson WD, et al. American College of Cardiology Clinical Expert Consensus Document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS). A report of the American College of Cardiology Task Force on clinical expert consensus documents. J Am Coll Cardiol. 2001:37. https://doi.org/10.1016/s0735-1097(01)01175-5.

  35. Nissen SE, Yock P. Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation. 2001:103. https://doi.org/10.1161/01.cir.103.4.604.

  36. Jang J-S, Song Y-J, Kang W, et al. Intravascular ultrasound-guided implantation of drug-eluting stents to improve outcome. J Am Coll Cardiol Intv. 2014:7. https://doi.org/10.1016/j.jcin.2013.09.013.

  37. Ahn J-M, Kang S-J, Yoon S-H, et al. Meta-analysis of outcomes after intravascular ultrasound–guided versus angiography-guided drug-eluting stent implantation in 26,503 patients enrolled in three randomized trials and 14 observational studies. Am J Cardiol. 2014:113. https://doi.org/10.1016/j.amjcard.2013.12.043.

  38. Nerlekar N, Cheshire C, Verma K, et al. Intravascular ultrasound guidance improves clinical outcomes during implantation of both first- and second-generation drug-eluting stents: a meta-analysis. EuroIntervention. 2017:12. https://doi.org/10.4244/EIJ-D-16-00769.

  39. Bavishi C, Sardar P, Chatterjee S, et al. Intravascular ultrasound–guided vs angiography-guided drug-eluting stent implantation in complex coronary lesions: meta-analysis of randomized trials. Am Heart J. 2017:185. https://doi.org/10.1016/j.ahj.2016.10.008.

  40. Buccheri S, Franchina G, Romano S, et al. Clinical outcomes following intravascular imaging-guided versus coronary angiography–guided percutaneous coronary intervention with stent implantation. J Am Coll Cardiol Intv. 2017:10. https://doi.org/10.1016/j.jcin.2017.08.051.

  41. Yamaguchi T, Terashima M, Akasaka T, et al. Safety and feasibility of an intravascular optical coherence tomography image wire system in the clinical setting. Am J Cardiol. 2008:101. https://doi.org/10.1016/j.amjcard.2007.09.116.

  42. Azzalini L, Mitomo S, Hachinohe D, Regazzoli D, Colombo A. Zero-contrast percutaneous coronary intervention guided by dextran-based optical coherence tomography. Can J Cardiol. 2018:34. https://doi.org/10.1016/j.cjca.2017.11.008.

  43. Généreux P, Madhavan MV, Mintz GS, et al. Ischemic outcomes after coronary intervention of calcified vessels in acute coronary syndromes. J Am Coll Cardiol. 2014:63. https://doi.org/10.1016/j.jacc.2014.01.034.

  44. Venuti G, Piedimonte G, Castellana C, et al. Using the coronary lithotripsy system for coronary artery disease. Futur Cardiol. 2021;17:59–71.

    Article  CAS  Google Scholar 

  45. Barbato E, Shlofmitz E, Milkas A, Shlofmitz R, Azzalini L, Colombo A. State of the art: evolving concepts in the treatment of heavily calcified and undilatable coronary stenoses—From debulking to plaque modification, a 40-year-long journey. EuroIntervention. 2017;13 https://doi.org/10.4244/EIJ-D-17-00473.

  46. Gupta T, Weinreich M, Greenberg M, Colombo A, Latib A. Rotational atherectomy: a contemporary appraisal. Interventional cardiology (London, England). 2019:14. https://doi.org/10.15420/icr.2019.17.R1.

  47. Kini AS, Vengrenyuk Y, Pena J, et al. Optical coherence tomography assessment of the mechanistic effects of rotational and orbital atherectomy in severely calcified coronary lesions. Catheter Cardiovasc Interv. 2015:86. https://doi.org/10.1002/ccd.26000.

  48. Shlofmitz E, Jeremias A, Shlofmitz R, Ali ZA. Lesion preparation with orbital atherectomy. Interventional cardiology (London, England). 2019:14. https://doi.org/10.15420/icr.2019.20.R1.

  49. Ali ZA, Brinton TJ, Hill JM, et al. Optical coherence tomography characterization of coronary Lithoplasty for treatment of calcified lesions: first description. J Am Coll Cardiol Img. 2017:10. https://doi.org/10.1016/j.jcmg.2017.05.012.

  50. Hill JM, Kereiakes DJ, Shlofmitz RA, et al. Intravascular lithotripsy for treatment of severely calcified coronary artery disease. J Am Coll Cardiol. 2020:76. https://doi.org/10.1016/j.jacc.2020.09.603.

  51. Saito S, Yamazaki S, Takahashi A, et al. Intravascular lithotripsy for vessel preparation in severely calcified coronary arteries prior to stent placement―primary outcomes from the Japanese disrupt CAD IV study. Circ J. 2021;85:826–33.

    Article  PubMed  Google Scholar 

  52. Thomas M, Hildick-Smith D, Louvard Y, et al. Percutaneous coronary intervention for bifurcation disease. A consensus view from the first meeting of the European bifurcation Club. EuroIntervention. 2006;2

    Google Scholar 

  53. Medina A, Suárez de Lezo J, Pan M. A new classification of coronary bifurcation lesions. Revista Española de Cardiología (English Edition). 2006:59. https://doi.org/10.1016/S1885-5857(06)60130-8.

  54. Steigen TK, Maeng M, Wiseth R, et al. Randomized study on simple versus complex stenting of coronary artery bifurcation lesions: the Nordic bifurcation study. Circulation. 2006:114. https://doi.org/10.1161/CIRCULATIONAHA.106.664920.

  55. Colombo A, Bramucci E, Saccà S, et al. Randomized study of the crush technique versus provisional side-branch stenting in true coronary bifurcations: the CACTUS (coronary bifurcations: application of the crushing technique using sirolimus-eluting stents) study. Circulation. 2009:119. https://doi.org/10.1161/CIRCULATIONAHA.108.808402.

  56. Hildick-Smith D, de Belder AJ, Cooter N, et al. Randomized trial of simple versus complex drug-eluting stenting for bifurcation lesions. Circulation. 2010:121. https://doi.org/10.1161/CIRCULATIONAHA.109.888297.

  57. Ferenc M, Gick M, Kienzle R-P, et al. Randomized trial on routine vs. provisional T-stenting in the treatment of de novo coronary bifurcation lesions. Eur Heart J. 2008:29. https://doi.org/10.1093/eurheartj/ehn455.

  58. Chen S-L, Santoso T, Zhang J-J, et al. A randomized clinical study comparing double kissing crush with provisional stenting for treatment of coronary bifurcation lesions: results from the DKCRUSH-II (double kissing crush versus provisional stenting technique for treatment of coronary bifurcation lesions) trial. J Am Coll Cardiol. 2011:57. https://doi.org/10.1016/j.jacc.2010.10.023.

  59. Chen S-L, Xu B, Han Y-L, et al. Comparison of double kissing crush versus culotte stenting for unprotected distal left main bifurcation lesions: results from a multicenter, randomized, prospective DKCRUSH-III study. J Am Coll Cardiol. 2013:61. https://doi.org/10.1016/j.jacc.2013.01.023.

  60. Chen S-L, Xu B, Han Y-L, et al. Clinical outcome after DK crush versus culotte stenting of distal left Main bifurcation lesions: the 3-year follow-up results of the DKCRUSH-III study. JACC Cardiovasc Interv. 2015:8. https://doi.org/10.1016/j.jcin.2015.05.017.

  61. Chen X, Li X, Zhang JJ, et al. 3-year outcomes of the DKCRUSH-V trial comparing DK crush with provisional stenting for left Main bifurcation lesions. J Am Coll Cardiol Intv. 2019;12:1927–37.

    Article  Google Scholar 

  62. Hildick-Smith D, Egred M, Banning A, et al. The European bifurcation club left Main coronary stent study: a randomized comparison of stepwise provisional vs. systematic dual stenting strategies (EBC MAIN). Eur Heart J. 2021;42:3829–39.

    Article  PubMed  Google Scholar 

  63. Buszman PE, Buszman PP, Banasiewicz-Szkróbka I, et al. Left Main stenting in comparison with surgical revascularization. J Am Coll Cardiol Intv. 2016;9:318–27.

    Article  Google Scholar 

  64. Thuijs DJFM, Kappetein AP, Serruys PW, et al. Percutaneous coronary intervention versus coronary artery bypass grafting in patients with three-vessel or left main coronary artery disease: 10-year follow-up of the multicentre randomised controlled SYNTAX trial. Lancet. 2019;394:1325–34.

    Article  CAS  PubMed  Google Scholar 

  65. Morice M-C, Serruys PW, Kappetein AP, et al. Five-year outcomes in patients with left Main disease treated with either percutaneous coronary intervention or coronary artery bypass grafting in the synergy between percutaneous coronary intervention with Taxus and cardiac surgery trial. Circulation. 2014;129:2388–94.

    Article  PubMed  Google Scholar 

  66. Park D-W, Ahn J-M, Park H, et al. Ten-year outcomes after drug-eluting stents versus coronary artery bypass grafting for left Main coronary disease. Circulation. 2020;141:1437–46.

    Article  PubMed  Google Scholar 

  67. Stone GW, Kappetein AP, Sabik JF, et al. Five-year outcomes after PCI or CABG for left Main coronary disease. N Engl J Med. 2019;381:1820–30.

    Article  PubMed  Google Scholar 

  68. Mäkikallio T, Holm NR, Lindsay M, et al. Percutaneous coronary angioplasty versus coronary artery bypass grafting in treatment of unprotected left main stenosis (NOBLE): a prospective, randomised, open-label, non-inferiority trial. Lancet. 2016;388:2743–52.

    Article  PubMed  Google Scholar 

  69. Holm NR, Mäkikallio T, Lindsay MM, et al. Percutaneous coronary angioplasty versus coronary artery bypass grafting in the treatment of unprotected left main stenosis: updated 5-year outcomes from the randomised, non-inferiority NOBLE trial. Lancet. 2020;395:191–9.

    Article  PubMed  Google Scholar 

  70. Capodanno D, Stone GW, Morice MC, Bass TA, Tamburino C. Percutaneous coronary intervention versus coronary artery bypass graft surgery in left main coronary artery disease: a meta-analysis of randomized clinical data. J Am Coll Cardiol. 2011;58:1426–32.

    Article  PubMed  Google Scholar 

  71. Fajadet J, Capodanno D, Stone GW. Management of left main disease: an update. Eur Heart J. 2019;40:1454–65.

    Article  PubMed  Google Scholar 

  72. Neumann F-J, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40:87–165.

    Article  PubMed  Google Scholar 

  73. Levine GN, Bates ER, Blankenship JC, et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines and the Society for Cardiovascular Angiography and Interventions. Catheter Cardiovasc Interv. 2012;79:453–95.

    Article  PubMed  Google Scholar 

  74. Morino Y, Abe M, Morimoto T, et al. Predicting successful guidewire crossing through chronic Total occlusion of native coronary lesions within 30 minutes. J Am Coll Cardiol Intv. 2011;4:213–21.

    Article  Google Scholar 

  75. Christopoulos G, Karmpaliotis D, Wyman MR, et al. Percutaneous intervention of circumflex chronic total occlusions is associated with worse procedural outcomes: insights from a multicentre US registry. Can J Cardiol. 2014;30:1588–94.

    Article  PubMed  Google Scholar 

  76. Hagnäs MJ, Venuti G, Castellana C, et al. Does the left circumflex coronary artery location impact on the success of chronic total occlusion recanalization? A single-center cohort study. Scandinavian cardiovascular journal: SCJ. 2021;55:106–8.

    Article  PubMed  Google Scholar 

  77. Brilakis ES, Grantham JA, Rinfret S, et al. A percutaneous treatment algorithm for crossing coronary chronic total occlusions. JACC Cardiovasc Interv. 2012;5:367–79.

    Article  PubMed  Google Scholar 

  78. Wu EB, Brilakis ES, Mashayekhi K, et al. Global chronic Total occlusion crossing algorithm. J Am Coll Cardiol. 2021;78:840–53.

    Article  PubMed  Google Scholar 

  79. Galassi AR, Werner GS, Boukhris M, et al. Percutaneous recanalisation of chronic total occlusions: 2019 consensus document from the EuroCTO Club. EuroIntervention. 2019;15:198–208.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corrado Tamburino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferrarotto, L., La Manna, A., Tamburino, C. (2023). Percutaneous Myocardial Revascularization. In: Concistrè, G. (eds) Ischemic Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-25879-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25879-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25878-7

  • Online ISBN: 978-3-031-25879-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics