Skip to main content

Lasers in Diabetic Retinopathy

  • Chapter
  • First Online:
Retina Lasers in Ophthalmology

Abstract

Diabetic retinopathy (DR) is one of the most prevalent ophthalmic complications in patients with diabetes and one of the leading causes of blindness in developed countries. Treatment of DR includes different strategies, starting from systemic therapies, lifestyle issues, as well as local treatments, among them different forms of laser photocoagulation. Management of DR has faced a significant change since introduction of intravitreal drugs such as steroids and anti-VEGF agents and that fact influenced the strategies of laser application in that disorder. A significant shift is observed towards the non-damaging to retina forms of laser application, especially subthreshold micropulse or selective retinal therapy. These issues are thoroughly discussed in that chapter together with the outline of practical protocols for different lasers used in DR. Historical milestone diabetic retinopathy studies on retinal photocoagulation are placed in the modern perspective and availability of new technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bertelsen G, Peto T, Lindekleiv H, Schirmer H, Solbu MD, Toft I, et al. Tromso eye study: prevalence and risk factors of diabetic retinopathy. Acta Ophthalmol. 2013;91(8):716–21.

    Article  PubMed  Google Scholar 

  3. Thomas RL, Dunstan FD, Luzio SD, Chowdhury SR, North RV, Hale SL, et al. Prevalence of diabetic retinopathy within a national diabetic retinopathy screening service. Br J Ophthalmol. 2015;99(1):64–8.

    Article  PubMed  Google Scholar 

  4. Wang W, Lo ACY. Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci. 2018;19(6):1816.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Beltramo E, Porta M. Pericyte loss in diabetic retinopathy: mechanisms and consequences. Curr Med Chem. 2013;20(26):3218–25.

    Article  CAS  PubMed  Google Scholar 

  6. Romero-Aroca P, Baget-Bernaldiz M, Pareja-Rios A, Lopez-Galvez M, Navarro-Gil R, Verges R. Diabetic macular edema pathophysiology: vasogenic versus inflammatory. J Diabetes Res. 2016;2016:2156273.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Joussen AM, Poulaki V, Le ML, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J. 2004;18(12):1450–2.

    Article  CAS  PubMed  Google Scholar 

  8. Arroba AI, Valverde AM. Modulation of microglia in the retina: new insights into diabetic retinopathy. Acta Diabetol. 2017;54:527–33.

    Article  PubMed  Google Scholar 

  9. Park SH, Park JW, Park SJ, et al. Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina. Diabetologia. 2003;46(9):1260–8.

    Article  PubMed  Google Scholar 

  10. Barber AJ. A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(2):283–90.

    Article  CAS  PubMed  Google Scholar 

  11. van Dijk HW, Verbraak FD, Kok PH, Stehouwer M, Garvin MK, Sonka M, DeVries JH, Schlingemann RO, Abràmoff MD. Early neurodegeneration in the retina of type 2 diabetic patients. Invest Ophthalmol Vis Sci. 2012;53(6):2715–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Alistair J, Lieth E, Khin SA, Antonetti DA et al. Neural apoptosis in the retina during experimental and human diabetes early onset and effect of insulin. J Clin Invest. 1998;102:783–91.

    Google Scholar 

  13. van Dijk HW, Verbraak FD, Kok PH, Garvin MK, Sonka M, Lee K, Devries JH, Michels RP, van Velthoven ME, Schlingemann RO, Abràmoff MD. Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes. Invest Ophthalmol Vis Sci. 2010;51(7):3660–5.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Stefánsson E. The therapeutic effects of retinal laser treatment and vitrectomy. A theory based on oxygen and vascular physiology. Acta Ophthalmol Scand. 2001;79(5):435–40.

    Google Scholar 

  15. Luttrull JK, Chang DB, Margolis BWL, Dorin G, Luttrull DK. Laser re-sensitization of medically unresponsive neovascular age-related macular degeneration: efficacy and implications. Retina. 2015;35(6):1184–94.

    Article  CAS  PubMed  Google Scholar 

  16. Lavinsky D, Wang J, Huie P, Dalal R, Lee SJ, Lee DY, Palanker D. Nondamaging retinal laser therapy: rationale and applications to the macula. Invest Ophthalmol Vis Sci. 2016; 57(6):2488±500.

    Google Scholar 

  17. Luttrull JK, Sramek C, Palanker D, Spink CJ, Musch DC. Long-term safety, high-resolution imaging, and tissue temperature modeling of subvisible diode micropulse photocoagulation for retinovascular macular edema. Retina. 2012;32(2):375–86.

    Article  PubMed  Google Scholar 

  18. Luttrull JK, Margolis BWL. Functionally guided retinal protective therapy as prophylaxis for age-related and inherited retinal degenerations. A pilot study. Invest Ophthalmol Vis Sci. 2016;5 7(1):265–75.

    Google Scholar 

  19. Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol. 2000;2(8):469–75.

    Article  CAS  PubMed  Google Scholar 

  20. Furukawa A, Koriyama Y. A role of heat shock protein 70 in photoreceptor cell death: potential as a novel therapeutic target in retinal degeneration. CNS Neurosci Ther. 2016;22(1):7–14.

    Article  CAS  PubMed  Google Scholar 

  21. Wilkinson CP, Ferris FLIII, Klein RE et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 2003;110:1679.

    Google Scholar 

  22. Four risk factors for severe visual loss in diabetic retinopathy. The third report from the Diabetic Retinopathy Study. The Diabetic Retinopathy Study Research Group. Arch Ophthalmol. 1979;97(4):654–5.

    Google Scholar 

  23. Early Treatment Diabetic Retinopathy Study Research Group. Photocoagulation for diabetic edema. Arch Ophthalmol. 1985;103:1796–806.

    Google Scholar 

  24. Frizziero L, Calciati A, Torresin T, Midena G, Parrozzani R, Pilotto E, Midena E. Diabetic macular edema treated with 577-nm subthreshold micropulse laser: a real-life, long-term study. J Pers Med. 2021;11(5):405.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen G, Tzekov R, Li W, Jiang F, Mao S, Tong Y. Subthreshold micropulse diode laser versus conventional laser photocoagulation for diabetic macular edema: a meta-analysis of randomized controlled trials. Retina. 2016;36(11):2059–65.

    Article  CAS  PubMed  Google Scholar 

  26. Wilkinson CP, Ferris FL 3rd, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110(9):1677–82.

    Article  CAS  PubMed  Google Scholar 

  27. Schmidt-Erfurth U, Garcia-Arumi J, Bandello F, Berg K, Chakravarthy U, Gerendas BS, Jonas J, Larsen M, Tadayoni R, Loewenstein A. Guidelines for the management of diabetic macular edema by the European society of retina specialists (EURETINA). Ophthalmologica. 2017;237(4):185–222.

    Article  PubMed  Google Scholar 

  28. Chhablani J, Roh YJ, Jobling AI, Fletcher EL, Lek JJ, Bansal P, Guymer R, Luttrull JK. Restorative retinal laser therapy: present state and future directions. Surv Ophthalmol. 2018;63(3):307–28.

    Google Scholar 

  29. Hwang TS, Gao SS, Liu L, Lauer AK, Bailey ST, Flaxel CJ, et al. Automated quantification of capillary nonperfusion using optical coherence tomography angiography in diabetic retinopathy. JAMA Ophthalmol. 2016;134:367–73.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Al-Sheikh M, Tepelus TC, Nazikyan T, Sadda SR. Repeatability of automated vessel density measurements using optical coherence tomography angiography. Br J Ophthalmol. 2017;101:449–52.

    Article  PubMed  Google Scholar 

  31. Sikorski BL, Malukiewicz G, Stafiej J, Lesiewska-Junk H, Raczynska D. The diagnostic function of OCT in diabetic maculopathy. Mediators Inflamm. 2013;2013: 434560.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bressler NM, Beaulieu WT, Glassman AR, Blinder KJ, Bressler SB, Jampol LM, Melia M, Wells JA 3rd; Diabetic Retinopathy Clinical Research Network. Persistent macular thickening following intravitreous aflibercept, bevacizumab, or ranibizumab for central-involved DME with vision impairment: a secondary analysis of a randomized clinical trial. JAMA Ophthalmol. 2018;136(3):257–69.

    Google Scholar 

  33. Luttrull JK, Dorin G. Subthreshold diode micropulse photocoagulation as invisible retinal phototherapy for diabetic macular edema. A review. Current Diabetes Rev. 2012;8:274–84.

    Article  Google Scholar 

  34. Luttrull JK, Sinclair SD. Safety of transfoveal subthreshold diode micropulse laser for intra-foveal diabetic macular edema in eyes with good visual acuity. Retina. 2014;34(10):2010–20.

    Article  PubMed  Google Scholar 

  35. Price LD, Au S, Chong NV. Optomap ultrawide field imaging identifies additional retinal abnormalities in patients with diabetic retinopathy. Clin Ophthalmol. 2015;24(9):527–31.

    Article  Google Scholar 

  36. Silva PS, Horton MB, Clary D, Lewis DG, Sun JK, Cavallerano JD, Aiello LP. Identification of diabetic retinopathy and ungradable image rate with ultrawide field imaging in a national teleophthalmology program. Ophthalmology. 2016;123(6):1360–7.

    Article  PubMed  Google Scholar 

  37. Ghasemi Falavarjani K, Wang K, Khadamy J, Sadda SR. Ultra-wide-field imaging in diabetic retinopathy; an overview. J Curr Ophthalmol. 2016;28(2):57–60.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Silva PS, Cavallerano JD, Haddad NM, Kwak H, Dyer KH, Omar AF, Shikari H, Aiello LM, Sun JK, Aiello LP. Peripheral lesions identified on ultrawide field imaging predict increased risk of diabetic retinopathy progression over 4 years. Ophthalmology. 2015;122(5):949–56.

    Article  PubMed  Google Scholar 

  39. Wessel MM, Nair N, Aaker GD, Ehrlich JR, D’Amico DJ, Kiss S. Peripheral retinal ischaemia, as evaluated by ultra-widefield fluorescein angiography, is associated with diabetic macular oedema. Br J Ophthalmol. 2012;96(5):694–8.

    Article  PubMed  Google Scholar 

  40. Talks SJ, Manjunath V, Steel DH, Peto T, Taylor R. New vessels detected on wide-field imaging compared to two-field and seven-field imaging: implications for diabetic retinopathy screening image analysis. Br J Ophthalmol. 2015;99(12):1606–9.

    Article  PubMed  Google Scholar 

  41. Soliman AZ, Silva PS, Aiello LP, Sun JK. Ultra-wide field retinal imaging in detection, classification, and management of diabetic retinopathy. Semin Ophthalmol. 2012;27(5–6):221–7.

    Google Scholar 

  42. Pellegrini M, Cozzi M, Staurenghi G, Corvi F. Comparison of wide field optical coherence tomography angiography with extended field imaging and fluorescein angiography in retinal vascular disorders. PLoS ONE. 2019;14(4): e0214892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Couturier A, Rey PA, Erginay A, et al. Widefield OCT-angiography and fluorescein angiography assessments of nonperfusion in diabetic retinopathy and edema treated with anti-vascular endothelial growth factor. Ophthalmology. 2019;126(12):1685–94.

    Article  PubMed  Google Scholar 

  44. https://www.aao.org Diabetic Retinopathy, Preferred Practice Pattern 2019.

  45. Royal College of Ophthalmologists Guidelines 2013. www.rcophth.ac.uk

  46. The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes. 1995;44(8):968–83.

    Google Scholar 

  47. Zoungas S, Arima H, Gerstein HC, et al. Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials. Lancet Diabetes Endocrinol. 2017;5(6):431–7. https://doi.org/10.1016/S2213-8587(17)30104-3.

    Article  PubMed  Google Scholar 

  48. UK Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837–53.

    Article  Google Scholar 

  49. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ. 1998;317(7160):703–13.

    Article  PubMed Central  Google Scholar 

  50. Gæde P, Vedel P, Parving HH, et al. Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study. Lancet. 1999;353(9153):617–22.

    Article  PubMed  Google Scholar 

  51. Diabetic Retinopathy Study Research Group. Indications for photocoagulation treatment of diabetic retinopathy: diabetic retinopathy study report 14. Int Ophthalmol Clin. 1987;27:239–53.

    Article  Google Scholar 

  52. Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 1991;98:766–85.

    Google Scholar 

  53. Diabetic Retinopathy Study Research Group. Photocoagulation treatment of proliferative diabetic retinopathy: clinical application of diabetic retinopathy study (DRS) findings, DRS report number 8. Ophthalmology. 1981;88(7):583–600.

    Article  Google Scholar 

  54. Nagpal M, Marlecha S, Nagpal K. Comparison of laser photocoagulation for diabetic retinopathy using 532-nm standard laser versus multispot pattern scan laser. Retina. 2010;30(3):452–8.

    Article  PubMed  Google Scholar 

  55. Subash M, Comyn O, Samy A, et al. The effect of multispot laser panretinal photocoagulation on retinal sensitivity and driving eligibility in patients with diabetic retinopathy. JAMA Ophthalmol. 2016;134(6):666–72.

    Article  PubMed  Google Scholar 

  56. Muqit MM, Marcellino GR, Gray JC, et al. Pain responses of Pascal 20 ms multi-spot and 100 ms single-spot panretinal photocoagulation: manchester pascal study, MAPASS report 2. Br J Ophthalmol. 2010;94(11):1493–8.

    Article  CAS  PubMed  Google Scholar 

  57. Muqit MM, Marcellino GR, Henson DB, et al. Single-session vs multiple-session pattern scanning laser panretinal photocoagulation in proliferative diabetic retinopathy: the manchester pascal study. Arch Ophthalmol. 2010;128(5):525–33.

    Article  PubMed  Google Scholar 

  58. Seymenoğlu RG, Ulusoy MO. Başer EF: safety and efficacy of panretinal photocoagulation in patients with high-risk proliferative diabetic retinopathy using pattern scan laser versus conventional YAG laser. Kaohsiung J Med Sci. 2016;32(1):22–6.

    Article  PubMed  Google Scholar 

  59. Nemcansky J, Stepanov A, Nemcanska S, et al. Single session of pattern scanning laser versus multiple sessions of conventional laser for panretinal photocoagulation in diabetic retinopathy. Efficacy, safety and painfulness. PLoS One 2019;14(7):e0219282.

    Google Scholar 

  60. Muraly P, Limbad P, Srinivasan K, et al. Single session of Pascal versus multiple sessions of conventional laser for panretinal photocoagulation in proliferative diabetic retinopathy: a comparative study. Retina. 2011;31(7):1359–65.

    Article  PubMed  Google Scholar 

  61. Muqit MM, Marcellino GR, Henson DB, et al. Randomized clinical trial to evaluate the effects of Pascal panretinal photocoagulation on macular nerve fiber layer: manchester Pascal study report 3. Retina. 2011;31(8):1699–707.

    Article  PubMed  Google Scholar 

  62. Bailey CC, Sparrow JM, Grey RH, et al. The national diabetic retinopathy laser treatment audit II. Proliferative retinopathy. Eye (Lond). 1998;12(Pt1):77–84.

    Article  PubMed  Google Scholar 

  63. Muqit MM, Marcellino GR, Henson DB, et al. Pascal panretinal laser ablation and regression analysis in proliferative diabetic retinopathy: manchester Pascal study report 4. Eye (Lond). 2011;25(11):1447–56.

    Article  CAS  PubMed  Google Scholar 

  64. Bandello F, Brancato R, Menchini U, et al. Light panretinal photocoagulation (LPRP) versus classic panretinal photocoagulation (CPRP) in proliferative diabetic retinopathy. Semin Ophthalmol. 2001;16(1):12–8.

    Article  CAS  PubMed  Google Scholar 

  65. Luttrull JK, Musch DC, Spink CA. Subthreshold diode micropulse panretinal photocoagulation for proliferative diabetic retinopathy. Eye. 2008;22(5):607–12.

    Article  CAS  PubMed  Google Scholar 

  66. Jhingan M, Goud A, Peguda HK, et al. Subthreshold micropulse laser for proliferative diabetic retinopathy: a randomized pilot study. Clin Ophthalmol. 2018;12:141–5.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Arevalo JF, Maia M, Flynn HW Jr, Saravia M, Avery RL, Wu L, Eid Farah M, Pieramici DJ, Berrocal MH, Sanchez JG. Tractional retinal detachment following intravitreal bevacizumab (Avastin) in patients with severe proliferative diabetic retinopathy. Br J Ophthalmol. 2008;92(2):213–6.

    Article  CAS  PubMed  Google Scholar 

  68. Berrocal MH, Acaba-Berrocal L. Early pars plana vitrectomy for proliferative diabetic retinopathy: update and review of current literature. Curr Opin Ophthalmol. 2021;32(3):203–8.

    Article  PubMed  Google Scholar 

  69. Cho WB, Moon JW, Kim HC. Intravitreal triamcinolone and bevacizumab as adjunctive treatments to panretinal photocoagulation in diabetic retinopathy. Br J Ophthalmol. 2010;94:858–63.

    Article  PubMed  Google Scholar 

  70. Mason JO, Yunker JJ, Vail R, McGwin G Jr. Intravitreal bevacizumab (Avastin) prevention of panretinal photocoagulation-induced complications in patients with severe proliferative diabetic retinopathy. Retina. 2008;28:1319–24.

    Article  PubMed  Google Scholar 

  71. Figueira J, Fletcher E, Massin P, Silva R, Bandello F, Midena E, Varano M, Sivaprasad S, Eleftheriadis H, Menon G, Amaro M, Ayello Scheer S, Creuzot-Garcher C, Nascimento J, Alves D, Nunes S, Lobo C, Cunha-Vaz J; EVICR.net Study Group. Ranibizumab plus panretinal photocoagulation versus panretinal photocoagulation alone for high-risk proliferative diabetic retinopathy (PROTEUS study). Ophthalmology. 2018;125(5):691–700.

    Google Scholar 

  72. Tonello M, Costa RA, Almeida FP, Barbosa JC, Scott IU, Jorge R. Panretinal photocoagulation versus PRP plus intravitreal bevacizumab for high-risk proliferative diabetic retinopathy (IBeHi study). Acta Ophthalmol. 2008;86(4):385–9. https://doi.org/10.1111/j.1600-0420.2007.01056.x. Epub 2007 Nov 7 PMID: 17995982.

    Article  CAS  PubMed  Google Scholar 

  73. Jorge R, Costa RA, Calucci D, Cintra LP, Scott IU. Intravitreal bevacizumab (Avastin) for persistent new vessels in diabetic retinopathy (IBEPE study) Retina. 2006;26(9):1006–13.

    Google Scholar 

  74. Bhavsar AR, Torres K, Beck RW, et al. Randomized clinical trial evaluating intravitreal ranibizumab or saline for vitreous hemorrhage from proliferative diabetic retinopathy. JAMA Ophthalmol. 2013;131(3):283–93.

    Article  PubMed Central  Google Scholar 

  75. Writing Committee for the Diabetic Retinopathy Clinical Research Network, Gross JG, Glassman AR, Jampol LM, Inusah S, Aiello LP, Antoszyk AN, Baker CW, Berger BB, Bressler NM, Browning D, Elman MJ, Ferris FL 3rd, Friedman SM, Marcus DM, Melia M, Stockdale CR, Sun JK, Beck RW. Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA. 2015;314(20):2137–46.

    Google Scholar 

  76. Sivaprasad S, Prevost AT, Vasconcelos JC, et al. CLARITY Study Group. Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (CLARITY): a multicentre, single-blinded, randomised, controlled, phase 2b, non-inferiority trial. Lancet Lond Engl. 2017;389(10085):2193–203.

    Google Scholar 

  77. Gross J, Glassman AR, Liu D, et al. Five-year outcomes of panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy. JAMA Ophthalmol. 2018;136(10):1138–48.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Maguire MG, Liu D, Bressler SB, Friedman SM, Melia M, Stockdale CR, Glassman AR, Sun JK; DRCR Retina Network. Lapses in care among patients assigned to ranibizumab for proliferative diabetic retinopathy: a post hoc analysis of a randomized clinical trial. JAMA Ophthalmol. 2021;139(12):1266–73.

    Google Scholar 

  79. Hutton DW, Stein JD, Glassman AR, Bressler NM, Jampol LM, Sun JK; DRCR Retina Network. Five-year cost-effectiveness of intravitreous ranibizumab therapy vs panretinal photocoagulation for treating proliferative diabetic retinopathy: a secondary analysis of a randomized clinical trial. JAMA Ophthalmol. 2019;137(12):1–9.

    Google Scholar 

  80. Tan Y, Fukutomi A, Sun MT, Durkin S, Gilhotra J, Chan WO. Anti-VEGF crunch syndrome inproliferative diabetic retinopathy: A review. Surv Ophthalmol. 2021 Nov-Dec;66(6):926–932.

    Google Scholar 

  81. Nguyen QD, Brown DM, Marcus DM, Boyer DS, Patel S, Feiner L, Gibson A, Sy J, Rundle AC, Hopkins JJ, Rubio RG, Ehrlich JS; RISE and RIDE Research Group. Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology. 2012;119(4):789–801.

    Google Scholar 

  82. Brown DM, Schmidt-Erfurth U, Do DV, Holz FG, Boyer DS, Midena E, Heier JS, Terasaki H, Kaiser PK, Marcus DM, Nguyen QD, Jaffe GJ, Slakter JS, Simader C, Soo Y, Schmelter T, Yancopoulos GD, Stahl N, Vitti R, Berliner AJ, Zeitz O, Metzig C, Korobelnik JF. Intravitreal aflibercept for diabetic macular edema: 100-week results from the VISTA and VIVID studies. Ophthalmology. 2015;122(10):2044–52.

    Article  PubMed  Google Scholar 

  83. Mainster MA. Decreasing retinal photocoagulation damage: principles and techniques. Semin Ophthalmol. 1999;14:200e9.

    Google Scholar 

  84. Hamada M, Ohkoshi K, Inagaki K, Ebihara N, Murakami A. Subthreshold photocoagulation using endpoint management in the PASCAL® system for diffuse diabetic macular edema. J Ophthalmol. 2018;31(2018):7465794.

    Google Scholar 

  85. Pei-Pei W, Shi-Zhou H, Zhen T, Lin L, Ying L, Jiexiong O, Wen-Bo Z, Chen-Jin J. Randomised clinical trial evaluating best-corrected visual acuity and central macular thickness after 532-nm subthreshold laser grid photocoagulation treatment in diabetic macular oedema. Eye (Lond). 2015;29(3):313–21; quiz 322.

    Google Scholar 

  86. Roider J, Liew SH, Klatt C, Elsner H, Poerksen E, Hillenkamp J, Brinkmann R, Birngruber R. Selective retina therapy (SRT) for clinically significant diabetic macular edema. Graefes Arch Clin Exp Ophthalmol. 2010;248(9):1263–72.

    Article  PubMed  Google Scholar 

  87. Park YG, Kim JR, Kang S, Seifert E, Theisen-Kunde D, Brinkmann R, Roh YJ. Safety and efficacy of selective retina therapy (SRT) for the treatment of diabetic macular edema in Korean patients. Graefes Arch Clin Exp Ophthalmol. 2016;254(9):1703–13.

    Article  CAS  PubMed  Google Scholar 

  88. Kim M, Park YG, Jeon SH, Choi SY, Roh YJ. The efficacy of selective retina therapy for diabetic macular edema based on pretreatment central foveal thickness. Lasers Med Sci. 2020;35(8):1781–90.

    Article  PubMed  Google Scholar 

  89. Yamamoto M, Miura Y, Hirayama K, Kohno T, Kabata D, Theisen-Kunde D, Brinkmann R, Honda S. Predictive factors of outcome of selective retina therapy for diabetic macular edema. Int Ophthalmol. 2020;40(5):1221–32.

    Article  PubMed  Google Scholar 

  90. Gaca-Wysocka M, Grzybowski A. Application of 2RT nanopulse retinal laser in the treatment of diabetic macular edema. Ophthatherapy [Internet]. 2017 June 30 [cited 2020 Nov 5];4(2):81–4.

    Google Scholar 

  91. Casson RJ, Raymond G, Newland HS, Gilhotra JS, Gray TL. Pilot randomized trial of a nanopulse retinal laser versus conventional photocoagulation for the treatment of diabetic macular oedema. Clin Exp Ophthalmol. 2012;40(6):604–10.

    Article  PubMed  Google Scholar 

  92. Moisseiev E, Loewenstein A. Diabetic macular edema: emerging strategies and treatment algorithms. Dev Ophthalmol. 2017;60:165–74. https://doi.org/10.1159/000459706. Epub 2017 Apr 20 PMID: 28427075.

    Article  PubMed  Google Scholar 

  93. Figueira J, Khan J, Nunes S, Sivaprasad S, Rosa A, de Abreu AF, Cunha-VAz JG, Chong NV. Prospective randomised controlled trial comparing sub-threshold micropulse diode laser photocoagulation and conventional green laser for clinically significant diabetic macular oedema. Br J Ophthalmol. 2009;93:1341–4.

    Article  CAS  PubMed  Google Scholar 

  94. Keunen JEE, Battaglia-Parodi M, Vujosevic S, Luttrull JK. International retinal laser society guidelines for subthreshold laser treatment. Transl Vis Sci Technol. 2020;9(9):15.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lavinsky D, Cardillo JA, Melo LA Jr, et al. Randomized clinical trial evaluating mETDRS versus normal or high-density micropulse photocoagulation for diabetic macular edema. Invest Ophthalmol Vis Sci. 2011;52(7):4314–23.

    Article  PubMed  Google Scholar 

  96. Chang DB, Luttrull JK. Comparison of subthreshold 577 and 810 nm micropulse laser effects on heat-shock protein activation kinetics: implications for treatment efficacy and safety. Transl Vis Sci Technol. 2020;9(5):23.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Vujosevic S, Martini F, Longhin E, Convento E, Cavarzeran F, Midena E. Subthreshold micropulse yellow laser versus Subthreshold micropulse infrared laser in center-involving diabetic macular edema: Morphologic and Functional Safety. Retina. 2015;35:1594–6031.

    Google Scholar 

  98. Battaglia Parodi M, Bandello F. Is laser still important in diabetic macular edema as primary or deferral therapy? Dev Ophthalmol. 2017;60:125–30.

    Article  PubMed  Google Scholar 

  99. Sivaprasad S, Sandhu R, Tandon A, Sayed-Ahmed K, McHugh DA. Subthreshold micropulse diode laser photocoagulation for clinically significant diabetic macular oedema: a three-year follow up. Clin Exp Ophthalmol. 2007;35:640e4.

    Google Scholar 

  100. Luttrull JK, Musch DC, Mainster MA. Subthreshold diode micropulse photocoagulation for the treatment of clinically significant diabetic macular oedema. Br J Ophthalmol. 2005;89(1):74–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Vujosevic S, Bottega E, Casciano M, et al. Microperimetry and fundus autofluorescence in diabetic macular edema: subthreshold micropulse diode laser versus modified early treatment diabetic retinopathy study laser photocoagulation. Retina. 2010;30(6):908–16.

    Article  PubMed  Google Scholar 

  102. Takatsuna Y, Yamamoto S, Nakamura Y, et al. Long-term therapeutic efficacy of the subthreshold micropulse diode laser photocoagulation for diabetic macular edema. Jpn J Ophthalmol. 2011;55(4):365–9.

    Article  CAS  PubMed  Google Scholar 

  103. Othman IS, Eissa SA, Kotb MS, et al. Subthreshold diode-laser micropulse photocoagulation as a primary and secondary line of treatment in management of diabetic macular edema. Clin Ophthalmol. 2014;8:653–9.

    PubMed  PubMed Central  Google Scholar 

  104. Mansouri A, Sampat KM, Malik KJ, et al. Efficacy of subthreshold micropulse laser in the treatment of diabetic macular edema is influenced by pre-treatment central foveal thickness. Eye (Lond). 2014;28(12):1418–24.

    Article  PubMed  Google Scholar 

  105. Inagaki K, Ohkoshi K, Ohde S, et al. Comparative efficacy of pure yellow (577-nm) and 810-nm subthreshold micropulse laser photo-coagulation combined with yellow (561–577-nm) direct photocoagulation for diabetic macular edema. JPN J Ophthalmol. 2015;59(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  106. Fazel F, Bagheri M, Golabchi K, et al. Comparison of subthreshold diode laser micropulse therapy versus conventional photocoagulation laser therapy as primary treatment of diabetic macular edema. J Curr Ophthalmol. 2016;28(4):206–11.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Latalska M, Prokopiuk A, Wróbel-Dudzińska D, Mackiewicz J. Subthreshold micropulse yellow 577 nm laser therapy of diabetic macular oedema in rural and urban patients of south-eastern Poland. Ann Agric Environ Med. 2017;24(1):96–9.

    Article  CAS  PubMed  Google Scholar 

  108. Veselá Š, Hejsek L, Stepanov A, Dusová J, Marak J, Jirásková N, Studnička J. The use of micropulse laser in patients with diabetic macular edema at the Department of Ophthalmology, Faculty Hospital Hradec Králové. Cesk Slov Oftalmol. 2018 Summer;74(2):53-58. English. https://doi.org/10.31348/2018/1/2-2-2018. PMID: 30441950.

  109. Citirik M. The impact of central foveal thickness on the efficacy of subthreshold micropulse yellow laser photocoagulation in diabetic macular edema. Lasers Med Sci. 2019;34(5):907–12.

    Article  PubMed  Google Scholar 

  110. Vujosevic S, Gatti V, Muraca A, Brambilla M, Villani E, Nucci P, Rossetti L, De Cilla’ S. Optical coherence tomography angiography changes after subthreshold micropulse yellow laser in diabetic macular edema. Retina. 2020;40(2):312–21.

    Article  PubMed  Google Scholar 

  111. Vujosevic S, Toma C, Villani E, Brambilla M, Torti E, Leporati F, Muraca A, Nucci P, De Cilla S. Subthreshold micropulse laser in diabetic macular edema: 1-year improvement in OCT/OCT-angiography biomarkers. Transl Vis Sci Technol. 2020;9(10):31.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Bougatsou P, Panagiotopoulou EK, Gkika M, Dardabounis D, Konstantinidis A, Sideroudi H, Perente I, Labiris G. Comparison of subthreshold 532 nm diode micropulse laser with conventional laser photocoagulation in the treatment of non-centre involved clinically significant diabetic macular edema. Acta Medica (Hradec Kralove). 2020;63(1):25–30.

    Article  CAS  PubMed  Google Scholar 

  113. Li ZJ, Xiao JH, Zeng P, Zeng R, Gao X, Zhang YC, Lan YQ. Optical coherence tomography angiography assessment of 577 nm laser effect on severe non-proliferative diabetic retinopathy with diabetic macular edema. Int J Ophthalmol. 2020;13(8):1257–65.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Akkaya S, Açıkalın B, Doğan YE, Çoban F. Subthreshold micropulse laser versus intravitreal anti-VEGF for diabetic macular edema patients with relatively better visual acuity. Int J Ophthalmol. 2020;13(10):1606–11.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Abdelrahman A, Massoud W, Elshafei AMK, Genidy M, Abdallah RMA. Anatomical and functional outcomes of subthreshold micropulse laser versus intravitreal ranibizumab injection in treatment of diabetic macular edema. Int J Retina Vitreous. 2020;6(1):63.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Donati MC, Murro V, Mucciolo DP, Giorgio D, Cinotti G, Virgili G, Rizzo S. Subthreshold yellow micropulse laser for treatment of diabetic macular edema: comparison between fixed and variable treatment regimen. Eur J Ophthalmol. 2021;31(3):1254–60.

    Article  PubMed  Google Scholar 

  117. Al-Barki A, Al-Hijji L, High R, Schatz P, Do D, Nguyen QD, Luttrull JK, Kozak I. Comparison of short-pulse subthreshold (532 nm) and infrared micropulse (810 nm) macular laser for diabetic macular edema. Sci Rep. 2021;11(1):14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Passos RM, Malerbi FK, Rocha M, Maia M, Farah ME. Real-life outcomes of subthreshold laser therapy for diabetic macular edema. Int J Retina Vitreous. 2021;7(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Valera-Cornejo DA, García-Roa M, Quiroz-Mendoza J, Arias-Gómez A, Ramírez-Neria P, Villalpando-Gómez Y, Romero-Morales V, García-Franco R. Micropulse laser in patients with refractory and treatment-naïve center-involved diabetic macular edema: short terms visual and anatomic outcomes. Ther Adv Ophthalmol. 2021;19(13):2515841420979112.

    Google Scholar 

  120. Lai FHP, Chan RPS, Lai ACH, Tsang S, Woo TTY, Lam RF, Yuen CYF. Comparison of two-year treatment outcomes between subthreshold micropulse (577 nm) laser and aflibercept for diabetic macular edema. Jpn J Ophthalmol. 2021;65(5):680–8.

    Article  CAS  PubMed  Google Scholar 

  121. Bonfiglio V, Rejdak R, Nowomiejska K, Zweifel SA, Justus Wiest MR, Romano GL, Bucolo C, Gozzo L, Castellino N, Patane C, Pizzo C, Reibaldi M, Russo A, Longo A, Fallico M, Macchi I, Vadalà M, Avitabile T, Costagliola C, Jonak K, Toro MD. Efficacy and safety of subthreshold micropulse yellow laser for persistent diabetic macular edema after vitrectomy: a pilot study. Front Pharmacol. 2022;6(13): 832448.

    Article  Google Scholar 

  122. Lois N, Gardner E, Waugh N, Azuara-Blanco A, Mistry H, McAuley D, Acharya N, Aslam TM, Bailey C, Chong V, Downey L, Eleftheriadis H, Fatum S, George S, Ghanchi F, Groppe M, Hamilton R, Menon G, Saad A, Sivaprasad S, Shiew M, Steel DH, Talks JS, Adams C, Campbell C, Mills M, Clarke M; DIAMONDS Study Group. Diabetic macular oedema and diode subthreshold micropulse laser (DIAMONDS): study protocol for a randomised controlled trial. Trials. 2019;20(1):122.

    Google Scholar 

  123. Frizziero L, Calciati A, Midena G, Torresin T, Parrozzani R, Pilotto E, Midena E. Subthreshold micropulse laser modulates retinal neuroinflammatory biomarkers in diabetic macular edema. J Clin Med. 2021;10(14):3134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Midena E, Bini S, Martini F, Enrica C, Pilotto E, Micera A, Esposito G, Vujosevic S. Changes of aqueous humor müller cells’ biomarkers in human patients affected by diabetic macular edema after subthreshold micropulse laser treatment. Retina. 2020;40(1):126–34.

    Article  PubMed  Google Scholar 

  125. Ueda K, Shiraya T, Araki F, Hashimoto Y, Yamamoto M, Yamanari M, Ueta T, Minami T, Aoki N, Sugiyama S, Zhou HP, Totsuka K, Toyama T, Sugimoto K, Obata R, Kato S. Changes in entropy on polarized-sensitive optical coherence tomography images after therapeutic subthreshold micropulse laser for diabetic macular edema: a pilot study. PLoS ONE. 2021;16(9): e0257000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Işık MU, Değirmenci MFK, Sağlık A. Factors affecting the response to subthreshold micropulse laser therapy used in center-involved diabetic macular edema. Lasers Med Sci. 2022;37(3):1865–71.

    Article  PubMed  Google Scholar 

  127. Baker CW, Glassman AR, Beaulieu WT, Antoszyk AN, Browning DJ, Chalam KV, Grover S, Jampol LM, Jhaveri CD, Melia M, Stockdale CR, Martin DF, Sun JK; DRCR Retina Network. Effect of initial management with aflibercept vs laser photocoagulation vs observation on vision loss among patients with diabetic macular edema involving the center of the macula and good visual acuity: a randomized clinical trial. JAMA. 2019;321(19):1880–94.

    Google Scholar 

  128. Luttrull JK, Spink CJ. Serial optical coherence tomography of subthreshold diode laser micropulse photocoagulation for diabetic macular edema. Ophthalmic Surg Lasers Imaging. 2006;37:370–7.

    Article  PubMed  Google Scholar 

  129. Moisseiev E, Abbassi S, Thinda S, et al. Subthreshold micropulse laser reduces anti-VEGF injection burden in patients with diabetic macular edema. Eur J Ophthalmol. 2018;28(1):68–73.

    Article  PubMed  Google Scholar 

  130. Akhlaghi M, Dehghani A, Pourmohammadi R, Asadpour L, Pourazizi M. Effects of subthreshold diode micropulse laser photocoagulation on treating patients with refractory diabetic macular edema. J Curr Ophthalmol. 2018;31(2):157–60.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Inagaki K, Hamada M, Ohkoshi K. Minimally invasive laser treatment combined with intravitreal injection of anti-vascular endothelial growth factor for diabetic macular oedema. Sci Rep. 2019;9(1):7585.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Khattab AM, Hagras SM, AbdElhamid A, et al. Aflibercept with adjuvant micropulsed yellow laser versus aflibercept monotherapy in diabetic macular edema. Graef Arch Clin Exp Ophthalmol. 2019;257(7):1373–80.

    Article  CAS  Google Scholar 

  133. Kanar HS, Arsan A, Altun A, et al. Can subthreshold micropulse yellow laser treatment change the anti-vascular endothelial growth factor algorithm in diabetic macular edema? A randomized clinical trial. Indian J Ophthalmol. 2020;68(1):145–51.

    Article  PubMed  Google Scholar 

  134. Furashova O, Strassburger P, Becker KA, Engelmann K. Efficacy of combining intravitreal injections of ranibizumab with micropulse diode laser versus intravitreal injections of ranibizumab alone in diabetic macular edema (ReCaLL): a single center, randomised, controlled, non-inferiority clinical trial. BMC Ophthalmol. 2020;20(1):308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Abouhussein MA, Gomaa AR. Aflibercept plus micropulse laser versus aflibercept monotherapy for diabetic macular edema: 1-year results of a randomized clinical trial. Int Ophthalmol. 2020;40(5):1147–54.

    Article  PubMed  Google Scholar 

  136. Altınel MG, Acikalin B, Alis MG, Demir G, Mutibayraktaroglu KM, Totuk OMG, Ardagil A. Comparison of the efficacy and safety of anti-VEGF monotherapy versus anti-VEGF therapy combined with subthreshold micropulse laser therapy for diabetic macular edema. Lasers Med Sci. 2021;36(7):1545–53.

    Article  PubMed  Google Scholar 

  137. El Matri L, Chebil A, El Matri K, Falfoul Y, Chebbi Z. Subthreshold micropulse laser adjuvant to bevacizumab versus bevacizumab monotherapy in treating diabetic macular edema: one-year-follow-up. Ther Adv Ophthalmol. 2021;2(13):25158414211040890.

    Google Scholar 

  138. Koushan K, Eshtiaghi A, Fung P, Berger AR, Chow DR. Treatment of diabetic macular edema with aflibercept and micropulse laser (DAM study). Clin Ophthalmol. 2022;8(16):1109–15.

    Article  Google Scholar 

  139. Gawęcki M. Subthreshold diode micropulse laser combined with intravitreal therapy for macular edema-A systematized review and critical approach. J Clin Med. 2021;10(7):1394.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Richardson C, Waterman H. Pain relief during panretinal photo-coagulation for diabetic retinopathy: a national survey. Eye (Lond). 2009;23(12):2233–7.

    Article  CAS  PubMed  Google Scholar 

  141. Wu WC, Hsu KH, Chen TL, et al. Interventions for relieving pain associated with panretinal photocoagulation: a prospective randomized trial. Eye (Lond). 2006;20(6):712–9.

    Article  PubMed  Google Scholar 

  142. Blankenship GW, Gerke E, Batlle JF. Red krypton and blue-green argon laser diabetic panretinal photocoagulation. Graefes Arch Clin Exp Ophthalmol. 1989;227(4):364–8.

    Article  CAS  PubMed  Google Scholar 

  143. Sebag J, Buzney SM, Belyea DA, et al. Posterior vitreous detachment following panretinal laser photocoagulation. Graefes Arch Clin Exp Ophthalmol. 1990;228(1):5–8.

    Article  CAS  PubMed  Google Scholar 

  144. Buckley SA, Jenkins L, Benjamin L. Fields, DVLC and panretinal photocoagulation. Eye (Lond). 1992;6(Pt6):623–5.

    Article  PubMed  Google Scholar 

  145. Pahor D. Visual field loss after argon laser panretinal photocoagulation in diabetic retinopathy: full- versus mild-scatter coagulation. Int Ophthalmol. 1998;22(5):313–9.

    Article  CAS  PubMed  Google Scholar 

  146. Muqit MM, Wakely L, Stanga PE, et al. Effects of conventional argon panretinal laser photocoagulation on retinal nerve fibre layer and driving visual fields in diabetic retinopathy. Eye (Lond). 2010;24(7):1136–42.

    Article  CAS  PubMed  Google Scholar 

  147. Pearson AR, Tanner V, Keightley SJ, et al. What effect does laser photocoagulation have on driving visual fields in diabetics? Eye (Lond). 1998;12(Pt1):64–8.

    Article  PubMed  Google Scholar 

  148. Preti RC, Ramirez LM, Monteiro ML, et al. Contrast sensitivity evaluation in high risk proliferative diabetic retinopathy treated with panretinal photocoagulation associated or not with intravitreal bevacizumab injections: a randomised clinical trial. Br J Ophthalmol. 2013;97(7):885–9.

    Article  PubMed  Google Scholar 

  149. Lövestam-Adrian M, Svendenius N, Agardh E. Contrast sensitivity and visual recovery time in diabetic patients treated with panretinal photocoagulation. Acta Ophthalmol Scand. 2000;78(6):672–6.

    Article  PubMed  Google Scholar 

  150. Khosla PK, Rao V, Tewari HK, et al. Contrast sensitivity in diabetic retinopathy after panretinal photocoagulation. Ophthalmic Surg. 1994;25(8):516–20.

    CAS  PubMed  Google Scholar 

  151. Simon P, Glacet-Bernard A, Binaghi M, et al. Exérèse de néovaisseaux choroïdiens compliquant le traitement de la choriorétinopathie séreuse centrale [Choroidal neovascularization as a complication following laser treatment of central serous chorioretinopathy]. J Fr Ophtalmol. 2001;24(1):64–8.

    CAS  PubMed  Google Scholar 

  152. Koenig F, Soubrane G, Coscas G. Déchirures de l’épithélium pigmentaire après photocoagulation au cours de la dégénérescence maculaire liée à l’âge [Retinal pigment epithelial tears after photocoagulation in age-related macular degeneration]. J Fr Ophtalmol. 1989;12(11):775–80.

    CAS  PubMed  Google Scholar 

  153. Guyer DR, D’Amico DJ, Smith CW. Subretinal fibrosis after laser photocoagulation for diabetic macular edema. Am J Ophthalmol. 1992;113(6):652–6.

    Article  CAS  PubMed  Google Scholar 

  154. Shimura M, Yasuda K, Nakazawa T, et al. Panretinal photocoagulation induces pro-inflammatory cytokines and macular thickening in high-risk proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2009;247(12):1617–24.

    Article  CAS  PubMed  Google Scholar 

  155. Krick TW, Bressler NM. Recent clinically relevant highlights from the diabetic retinopathy clinical research network. Curr Opin Ophthalmol. 2018;29(3):199–205.

    Article  PubMed  Google Scholar 

  156. Rema M, Sujatha P, Pradeepa R. Visual outcomes of pan-retinal photocoagulation in diabetic retinopathy at one-year follow-up and associated risk factors. Indian J Ophthalmol. 2005;53(2):93–9.

    Article  PubMed  Google Scholar 

  157. Schatz H, Madeira D, McDonald HR, et al. Progressive enlargement of laser scars following grid laser photocoagulation for diffuse diabetic macular edema. Arch Ophthalmol. 1991;109(11):1549–51.

    Article  CAS  PubMed  Google Scholar 

  158. Mori K, Yoneya S, Gehlbach PL. Choroidal perfusion delay and hyperpermeability in exudative retinal detachment induced by panretinal scatter photocoagulation. Retin Cases Brief Rep. 2007;1(2):68–9.

    Article  PubMed  Google Scholar 

  159. Gawęcki M. Increase in central retinal edema after subthreshold diode micropulse laser treatment of chronic central serous chorioretinopathy. Case Rep Ophthalmol Med. 2015;2015: 813414.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Gawęcki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gawęcki, M., Luttrull, J.K., Grzybowski, A. (2023). Lasers in Diabetic Retinopathy. In: Grzybowski, A., Luttrull, J.K., Kozak, I. (eds) Retina Lasers in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-031-25779-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25779-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25778-0

  • Online ISBN: 978-3-031-25779-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics