Skip to main content

Retrieval of Marine Parameters from Hyperspectral Satellite Data and Machine Learning Methods

  • Conference paper
  • First Online:
The Use of Artificial Intelligence for Space Applications (AII 2022)

Abstract

The PRISMA hyperspectral mission of the Italian Space Agency, operational since 2019, is providing high spectral resolution data in the range 400–2500 nm, in support of multiple environmental applications, such as water quality and ecosystem monitoring. In this work we discuss how hyperspectral data can be used to simultaneously retrieve aerosol and marine properties, including sediment properties and chlorophyll, by using a coupled radiative transfer model (RTM). As physics-based methods are computationally expensive, we investigate the use of machine learning methods for emulation and hybrid retrievals, combining physics with machine learning. We find that assumptions on the covariance matrices strongly affect the retrieval convergence, which is poor in the coastal waters we considered. We also show that RTM emulation provides substantial speed-up and good results for AOD and sediment variables, however further parameter tuning seems necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.asi.it/en/earth-science/prisma/.

  2. 2.

    https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/chime-copernicus.

  3. 3.

    https://sbg.jpl.nasa.gov/.

  4. 4.

    https://pace.gsfc.nasa.gov/.

  5. 5.

    https://github.com/CNES/RadiativeTransferCode-OSOAA.

  6. 6.

    Irradiance data is freely available from https://www.nrel.gov/grid/solar-resource/spectra.html.

  7. 7.

    The toolbox developed for the recently launched EnMAP mission is also using this library for regression.

References

  1. Antoine, D., Nobileau, D.: Recent increase of Saharan dust transport over the Mediterranean Sea, as revealed from ocean color satellite (SeaWiFS) observations. J. Geophys. Res. 111(D12), D12214 (2006). https://doi.org/10.1029/2005JD006795, https://doi.wiley.com/10.1029/2005JD006795

  2. Blondeau-Patissier, D., Gower, J.F.R., Dekker, A.G., Phinn, S.R., Brando, V.E.: A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog. Oceanogr. 123, 123–144 (2014). https://doi.org/10.1016/j.pocean.2013.12.008, www.sciencedirect.com/science/article/pii/S0079661114000020

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  4. Brence, J., Tanevski, J., Adams, J., Malina, E., Džeroski, S.: Surrogate models of radiative transfer codes for atmospheric trace gas retrievals from satellite observations. Mach. Learn. (2022). https://doi.org/10.1007/s10994-022-06155-2

    Article  Google Scholar 

  5. Caballero, I., Steinmetz, F., Navarro, G.: Evaluation of the first year of operational sentinel-2A data for retrieval of suspended solids in medium- to high-turbidity waters. Remote Sens. 10(7), 982 (2018). https://doi.org/10.3390/rs10070982, www.mdpi.com/2072-4292/10/7/982

  6. Camps-Valls, G., Sejdinovic, D., Runge, J., Reichstein, M.: A perspective on gaussian processes for earth observation. Nat. Sci. Rev. 6(4), 616–618 (2019). https://doi.org/10.1093/nsr/nwz028, www.academic.oup.com/nsr/article/6/4/616/5369430

  7. Chami, M., Lafrance, B., Fougnie, B., Chowdhary, J., Harmel, T., Waquet, F.: OSOAA: a vector radiative transfer model of coupled atmosphere-ocean system for a rough sea surface application to the estimates of the directional variations of the water leaving reflectance to better process multi-angular satellite sensors data over the ocean. Opt. Express 23(21), 27829 (2015). https://doi.org/10.1364/OE.23.027829, www.opg.optica.org/abstract.cfm?URI=oe-23-21-27829

  8. Chami, M., Larnicol, M., Minghelli, A., Migeon, S.: Influence of the suspended particulate matter on the satellite radiance in the sunglint observation geometry in coastal waters. Remote Sens. 12(9), 1445 (2020). https://doi.org/10.3390/rs12091445, www.mdpi.com/2072-4292/12/9/1445

  9. Chami, M., Santer, R., Dilligeard, E.: Radiative transfer model for the computation of radiance and polarization in an ocean-atmosphere system: polarization properties of suspended matter for remote sensing. Appl. Opt. 40(15), 2398 (2001). https://doi.org/10.1364/AO.40.002398, www.opg.optica.org/abstract.cfm?URI=ao-40-15-2398

  10. Cogliati, S., Sarti, F., Chiarantini, L., Cosi, M., Lorusso, R., Lopinto, E., Miglietta, F., Genesio, L., Guanter, L., Damm, A., Pérez-López, S., Scheffler, D., Tagliabue, G., Panigada, C., Rascher, U., Dowling, T.P.F., Giardino, C., Colombo, R.: The PRISMA imaging spectroscopy mission: Overview and first performance analysis. Remote Sens. Environ. 262, 112499 (2021). https://doi.org/10.1016/j.rse.2021.112499, www.sciencedirect.com/science/article/pii/S0034425721002170

  11. Dierssen, H.M., Ackleson, S.G., Joyce, K.E., Hestir, E.L., Castagna, A., Lavender, S., McManus, M.A.: Living up to the hype of hyperspectral aquatic remote sensing: Science, resources and outlook. Front. Environ. Sci. 9 (2021). https://www.frontiersin.org/article/10.3389/fenvs.2021.649528

  12. Frouin, R.J., Franz, B.A., Ibrahim, A., Knobelspiesse, K., Ahmad, Z., Cairns, B., Chowdhary, J., Dierssen, H.M., Tan, J., Dubovik, O., Huang, X., Davis, A.B., Kalashnikova, O., Thompson, D.R., Remer, L.A., Boss, E., Coddington, O., Deschamps, P.Y., Gao, B.C., Gross, L., Hasekamp, O., Omar, A., Pelletier, B., Ramon, D., Steinmetz, F., Zhai, P.W.: Atmospheric correction of satellite ocean-color imagery during the PACE era. Front. Earth Sci. 7 (2019). https://www.frontiersin.org/article/10.3389/feart.2019.00145

  13. Giardino, C., Bresciani, M., Braga, F., Fabbretto, A., Ghirardi, N., Pepe, M., Gianinetto, M., Colombo, R., Cogliati, S., Ghebrehiwot, S., Laanen, M., Peters, S., Schroeder, T., Concha, J.A., Brando, V.E.: First evaluation of PRISMA level 1 data for water applications. Sensors 20(16), 4553 (2020). https://doi.org/10.3390/s20164553, www.mdpi.com/1424-8220/20/16/4553

  14. Gómez-Dans, J.L., Lewis, P.E., Disney, M.: Efficient emulation of radiative transfer codes using gaussian processes and application to land surface parameter inferences. Remote Sens. 8(2), 119 (2016). https://doi.org/10.3390/rs8020119, www.mdpi.com/2072-4292/8/2/119

  15. Groom, S., Sathyendranath, S., Ban, Y., Bernard, S., Brewin, R., Brotas, V., Brockmann, C., Chauhan, P., Choi, J.k., Chuprin, A., Ciavatta, S., Cipollini, P., Donlon, C., Franz, B., He, X., Hirata, T., Jackson, T., Kampel, M., Krasemann, H., Lavender, S., Pardo-Martinez, S., Mélin, F., Platt, T., Santoleri, R., Skakala, J., Schaeffer, B., Smith, M., Steinmetz, F., Valente, A., Wang, M.: Satellite ocean colour: Current status and future perspective. Front. Mar. Sci. 6 (2019). https://www.frontiersin.org/article/10.3389/fmars.2019.00485

  16. Hansen, J.E., Travis, L.D.: Light scattering in planetary atmospheres. Space Sci. Rev. 16(4), 527–610 (1974). https://doi.org/10.1007/BF00168069

    Article  Google Scholar 

  17. Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.M., Dominguez, J.J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch, V.H., Razinger, M., Remy, S., Schulz, M., Suttie, M.: The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 19(6), 3515–3556 (2019). https://doi.org/10.5194/acp-19-3515-2019, www.acp.copernicus.org/articles/19/3515/2019/

  18. Kirk, J.T.O.: Light and Photosynthesis in Aquatic Ecosystems, 3rd edn. Cambridge University Press, Cambridge (2010). http://ebooks.cambridge.org/ref/id/CBO9781139168212

  19. Lopinto, E., Ananasso, C.: The PRISMA hyperspectral mission. In: European Association of Remote Sensing Laboratories Symposium Proceedings. Matera, Italy (2014)

    Google Scholar 

  20. Niroumand-Jadidi, M., Bovolo, F., Bruzzone, L.: Water quality retrieval from PRISMA hyperspectral images: First experience in a Turbid Lake and comparison with sentinel-2. Remote Sens. 12(23), 3984 (2020). www.mdpi.com/2072-4292/12/23/3984

  21. Pepe, M., Pompilio, L., Gioli, B., Busetto, L., Boschetti, M.: Detection and classification of non-photosynthetic vegetation from PRISMA hyperspectral data in croplands. Remote Sens. 12(23), 3903 (2020). www.mdpi.com/2072-4292/12/23/3903

  22. Politi, E., Paterson, S.K., Scarrott, R., Tuohy, E., O’Mahony, C., Cámaro-García, W.C.A.: Earth observation applications for coastal sustainability: Potential and challenges for implementation 1. Anthropocene Coasts (2019). https://doi.org/10.1139/anc-2018-0015

    Article  Google Scholar 

  23. Pozzer, A., Bacer, S., Sappadina, S.D.Z., Predicatori, F., Caleffi, A.: Long-term concentrations of fine particulate matter and impact on human health in Verona. Italy. Atmos. Pollut. Res. 10(3), 731–738 (2019). https://doi.org/10.1016/j.apr.2018.11.012, www.sciencedirect.com/science/article/pii/S1309104218303465

  24. Qian, S.E.: Hyperspectral satellites, evolution, and development history. IEEE J. Sel. Top. App. Earth Obs. Remote Sens. 14, 7032–7056 (2021). https://doi.org/10.1109/JSTARS.2021.3090256

  25. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge, Mass, Adaptive Computation and Machine Learning (2006)

    MATH  Google Scholar 

  26. Rodgers, C.D.: Inverse Methods for Atmospheric Sounding: Theory and Practice, Series on Atmospheric, Oceanic and Planetary Physics, vol. 2. World Scientific (2000). https://www.worldscientific.com/worldscibooks/10.1142/3171

  27. de Sa, N.C., Baratchi, M., Hauser, L.T., van Bodegom, P.: Exploring the impact of noise on hybrid inversion of PROSAIL RTM on sentinel-2 data. Remote Sens. 13(4), 648 (2021). https://doi.org/10.3390/rs13040648, www.mdpi.com/2072-4292/13/4/648

  28. Sathyendranath, S., Brewin, R.J.W., Brockmann, C., Brotas, V., Calton, B., Chuprin, A., Cipollini, P., Couto, A.B., Dingle, J., Doerffer, R., Donlon, C., Dowell, M., Farman, A., Grant, M., Groom, S., Horseman, A., Jackson, T., Krasemann, H., Lavender, S., Martinez-Vicente, V., Mazeran, C., Mélin, F., Moore, T.S., Müller, D., Regner, P., Roy, S., Steele, C.J., Steinmetz, F., Swinton, J., Taberner, M., Thompson, A., Valente, A., Zühlke, M., Brando, V.E., Feng, H., Feldman, G., Franz, B.A., Frouin, R., Gould, R.W., Hooker, S.B., Kahru, M., Kratzer, S., Mitchell, B.G., Muller-Karger, F.E., Sosik, H.M., Voss, K.J., Werdell, J., Platt, T.: An ocean-colour time series for use in climate studies: The experience of the ocean-colour climate change initiative (OC-CCI). Sensors 19(19), 4285 (2019). https://doi.org/10.3390/s19194285, www.mdpi.com/1424-8220/19/19/4285

  29. Shaw, G., Burke, H.h.K.: Spectral imaging for remote sensing. Lincoln Lab. J. 14(1) (2003)

    Google Scholar 

  30. Ssenyonga, T., Frette, O., Hamre, B., Stamnes, K., Muyimbwa, D., Ssebiyonga, N., Stamnes, J.J.: A new algorithm for simultaneous retrieval of aerosols and marine parameters. Algorithms 15(1), 4 (2022). https://doi.org/10.3390/a15010004, www.mdpi.com/1999-4893/15/1/4

  31. Wang, G., Lee, Z., Mishra, D.R., Ma, R.: Retrieving absorption coefficients of multiple phytoplankton pigments from hyperspectral remote sensing reflectance measured over cyanobacteria bloom waters: Retrieval of absorption coefficients of multiple pigments. Limnol. Oceanogr. Methods 14(7), 432–447 (2016). https://doi.org/10.1002/lom3.10102, www.onlinelibrary.wiley.com/doi/10.1002/lom3.10102

Download references

Acknowledgements

The work of the first author has been supported by a joint ASI/ESA postdoctoral fellowship. Useful discussions with colleagues from the ESA \(\Phi \)-lab and with G. L. Liberti (CNR) are kindly acknowledged. All data sources are freely available as mentioned in the text (PRISMA data are accessible only upon registration on the mission portal); for the PRISMA acquisitions, the information was generated by the authors under an ASI License to Use; Original PRISMA Product–©ASI–(2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Serva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Serva, F., Ansalone, L., Mathieu, PP. (2023). Retrieval of Marine Parameters from Hyperspectral Satellite Data and Machine Learning Methods. In: Ieracitano, C., Mammone, N., Di Clemente, M., Mahmud, M., Furfaro, R., Morabito, F.C. (eds) The Use of Artificial Intelligence for Space Applications. AII 2022. Studies in Computational Intelligence, vol 1088. Springer, Cham. https://doi.org/10.1007/978-3-031-25755-1_24

Download citation

Publish with us

Policies and ethics