Skip to main content

Migrating Blockchains Away from ECDSA for Post-quantum Security: A Study of Impact on Users and Applications

  • 71 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13619)

Abstract

Blockchains use Elliptic Curve Digital Signature Algorithm (ECDSA) to secure transactions between the wallets and blockchain nodes. Due to the potential threat from quantum computers, these blockchain implementations need to migrate away from ECDSA to a post-quantum algorithm before quantum computers become powerful enough. However, the migration process is long and challenging because replacing the underlying cryptographic implementation will significantly impact several existing use-cases, causing financial losses to users and making applications fail. We study the impact of such use-cases from a user and application perspective. To partly minimize the impact, we observe that use of BIP39 Seed is key to achieving backward compatibility and propose possible strategies in choosing and adapting a BIP39-compatible post-quantum algorithm.

Keywords

  • Post-quantum cryptography
  • Bitcoin
  • Blockchains
  • Elliptic curve digital signing algorithm

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-25734-6_19
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-25734-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)

Notes

  1. 1.

    A cursory search on Google.com yields estimates where more than 30% Bitcoin wallets are dormant.

References

  1. Alagic, G., et al.: Status report on the third round of the NIST post-quantum cryptography standardization process. Technical report, National Institute of Standards and Technology Gaithersburg, MD (2022)

    Google Scholar 

  2. Brown, D.R.L.: The Exact Security of ECDSA. Technical report, Advances in Elliptic Curve Cryptography (2000)

    Google Scholar 

  3. Buterin, V., et al.: Ethereum: a next-generation smart contract and decentralized application platform (2014)

    Google Scholar 

  4. Chen, J., Gan, W., Hu, M., Chen, C.M.: On the construction of a post-quantum blockchain. In: 2021 IEEE Conference on Dependable and Secure Computing (DSC), pp. 1–8. IEEE (2021)

    Google Scholar 

  5. Fang, W., Chen, W., Zhang, W., Pei, J., Gao, W., Wang, G.: Digital signature scheme for information non-repudiation in blockchain: a state of the art review. EURASIP J. Wirel. Commun. Netw. 2020(1), 1–15 (2020). https://doi.org/10.1186/s13638-020-01665-w

    CrossRef  Google Scholar 

  6. Fernandez-Carames, T.M., Fraga-Lamas, P.: Towards post-quantum blockchain: a review on blockchain cryptography resistant to quantum computing attacks. IEEE Access 8, 21091–21116 (2020)

    CrossRef  Google Scholar 

  7. Giechaskiel, I., Cremers, C., Rasmussen, K.B.: On bitcoin security in the presence of broken cryptographic primitives. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 201–222. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45741-3_11

    CrossRef  Google Scholar 

  8. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 21–30. ACM (2007)

    Google Scholar 

  9. King, S., Nadal, S.: Ppcoin: peer-to-peer crypto-currency with proof-of-stake. Self-Published Paper 19(1) (2012)

    Google Scholar 

  10. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)

    CrossRef  MathSciNet  MATH  Google Scholar 

  11. Lin, I.C., Liao, T.C.: A survey of blockchain security issues and challenges. Int. J. Netw. Secur. 19(5), 653–659 (2017)

    Google Scholar 

  12. Mayer, H.: ECDSA security in bitcoin and ethereum: a research survey. CoinFaabrik 28(126), 50 (2016)

    Google Scholar 

  13. Meng, L., Chen, L.: An enhanced long-term blockchain scheme against compromise of cryptography. Cryptology ePrint Archive (2021)

    Google Scholar 

  14. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-39799-X_31

    CrossRef  Google Scholar 

  15. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). https://bitcoin.org/bitcoin.pdf. Accessed Aug 2022

  16. Palatinus, M., Rusnak, P., Voisine, A., Bowe, S.: BIP 0039: mnemonic code for generating deterministic keys (2013). https://en.bitcoin.it/wiki/BIP_0039. Accessed Aug 2022

  17. Paquin, C., Stebila, D., Tamvada, G.: Benchmarking post-quantum cryptography in TLS. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 72–91. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_5

    CrossRef  MATH  Google Scholar 

  18. Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves. arXiv preprint quant-ph/0301141 (2003)

    Google Scholar 

  19. Qu, M.: SEC 2: Recommended elliptic curve domain parameters. Certicom Res., Mississauga, ON, Canada, Technical Report SEC2-Ver-0.6 (1999)

    Google Scholar 

  20. Sato, M., Matsuo, S.: Long-term public blockchain: resilience against compromise of underlying cryptography. In: 2017 26th International Conference on Computer Communication and Networks (ICCCN), pp. 1–8. IEEE (2017)

    Google Scholar 

  21. Shahid, F., Khan, A.: Smart digital signatures (SDS): a post-quantum digital signature scheme for distributed ledgers. Futur. Gener. Comput. Syst. 111, 241–253 (2020)

    CrossRef  Google Scholar 

  22. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    CrossRef  MathSciNet  MATH  Google Scholar 

  23. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

  24. Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Post-quantum authentication in TLS 1.3: a performance study. In: 27th Annual Network and Distributed System Security Symposium, NDSS 2020, San Diego, California, USA, 23–26 February 2020. The Internet Society (2020)

    Google Scholar 

  25. Tan, T.G., Szalachowski, P., Zhou, J.: Challenges of post-quantum digital signing in real-world applications: a survey. Int. J. Inf. Security 21, 1–16 (2022). https://doi.org/10.1007/s10207-022-00587-6

    CrossRef  Google Scholar 

  26. Tan, T.G., Zhou, J.: Layering quantum-resistance into classical digital signature algorithms. In: Liu, J.K., Katsikas, S., Meng, W., Susilo, W., Intan, R. (eds.) ISC 2021. LNCS, vol. 13118, pp. 26–41. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91356-4_2

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teik Guan Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Tan, T.G., Zhou, J. (2023). Migrating Blockchains Away from ECDSA for Post-quantum Security: A Study of Impact on Users and Applications. In: Garcia-Alfaro, J., Navarro-Arribas, G., Dragoni, N. (eds) Data Privacy Management, Cryptocurrencies and Blockchain Technology. DPM CBT 2022 2022. Lecture Notes in Computer Science, vol 13619. Springer, Cham. https://doi.org/10.1007/978-3-031-25734-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25734-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25733-9

  • Online ISBN: 978-3-031-25734-6

  • eBook Packages: Computer ScienceComputer Science (R0)