Abstract
Blockchains use Elliptic Curve Digital Signature Algorithm (ECDSA) to secure transactions between the wallets and blockchain nodes. Due to the potential threat from quantum computers, these blockchain implementations need to migrate away from ECDSA to a post-quantum algorithm before quantum computers become powerful enough. However, the migration process is long and challenging because replacing the underlying cryptographic implementation will significantly impact several existing use-cases, causing financial losses to users and making applications fail. We study the impact of such use-cases from a user and application perspective. To partly minimize the impact, we observe that use of BIP39 Seed is key to achieving backward compatibility and propose possible strategies in choosing and adapting a BIP39-compatible post-quantum algorithm.
Keywords
- Post-quantum cryptography
- Bitcoin
- Blockchains
- Elliptic curve digital signing algorithm
This is a preview of subscription content, access via your institution.
Buying options
Notes
- 1.
A cursory search on Google.com yields estimates where more than 30% Bitcoin wallets are dormant.
References
Alagic, G., et al.: Status report on the third round of the NIST post-quantum cryptography standardization process. Technical report, National Institute of Standards and Technology Gaithersburg, MD (2022)
Brown, D.R.L.: The Exact Security of ECDSA. Technical report, Advances in Elliptic Curve Cryptography (2000)
Buterin, V., et al.: Ethereum: a next-generation smart contract and decentralized application platform (2014)
Chen, J., Gan, W., Hu, M., Chen, C.M.: On the construction of a post-quantum blockchain. In: 2021 IEEE Conference on Dependable and Secure Computing (DSC), pp. 1–8. IEEE (2021)
Fang, W., Chen, W., Zhang, W., Pei, J., Gao, W., Wang, G.: Digital signature scheme for information non-repudiation in blockchain: a state of the art review. EURASIP J. Wirel. Commun. Netw. 2020(1), 1–15 (2020). https://doi.org/10.1186/s13638-020-01665-w
Fernandez-Carames, T.M., Fraga-Lamas, P.: Towards post-quantum blockchain: a review on blockchain cryptography resistant to quantum computing attacks. IEEE Access 8, 21091–21116 (2020)
Giechaskiel, I., Cremers, C., Rasmussen, K.B.: On bitcoin security in the presence of broken cryptographic primitives. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 201–222. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45741-3_11
Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 21–30. ACM (2007)
King, S., Nadal, S.: Ppcoin: peer-to-peer crypto-currency with proof-of-stake. Self-Published Paper 19(1) (2012)
Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
Lin, I.C., Liao, T.C.: A survey of blockchain security issues and challenges. Int. J. Netw. Secur. 19(5), 653–659 (2017)
Mayer, H.: ECDSA security in bitcoin and ethereum: a research survey. CoinFaabrik 28(126), 50 (2016)
Meng, L., Chen, L.: An enhanced long-term blockchain scheme against compromise of cryptography. Cryptology ePrint Archive (2021)
Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-39799-X_31
Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). https://bitcoin.org/bitcoin.pdf. Accessed Aug 2022
Palatinus, M., Rusnak, P., Voisine, A., Bowe, S.: BIP 0039: mnemonic code for generating deterministic keys (2013). https://en.bitcoin.it/wiki/BIP_0039. Accessed Aug 2022
Paquin, C., Stebila, D., Tamvada, G.: Benchmarking post-quantum cryptography in TLS. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 72–91. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_5
Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves. arXiv preprint quant-ph/0301141 (2003)
Qu, M.: SEC 2: Recommended elliptic curve domain parameters. Certicom Res., Mississauga, ON, Canada, Technical Report SEC2-Ver-0.6 (1999)
Sato, M., Matsuo, S.: Long-term public blockchain: resilience against compromise of underlying cryptography. In: 2017 26th International Conference on Computer Communication and Networks (ICCCN), pp. 1–8. IEEE (2017)
Shahid, F., Khan, A.: Smart digital signatures (SDS): a post-quantum digital signature scheme for distributed ledgers. Futur. Gener. Comput. Syst. 111, 241–253 (2020)
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)
Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Post-quantum authentication in TLS 1.3: a performance study. In: 27th Annual Network and Distributed System Security Symposium, NDSS 2020, San Diego, California, USA, 23–26 February 2020. The Internet Society (2020)
Tan, T.G., Szalachowski, P., Zhou, J.: Challenges of post-quantum digital signing in real-world applications: a survey. Int. J. Inf. Security 21, 1–16 (2022). https://doi.org/10.1007/s10207-022-00587-6
Tan, T.G., Zhou, J.: Layering quantum-resistance into classical digital signature algorithms. In: Liu, J.K., Katsikas, S., Meng, W., Susilo, W., Intan, R. (eds.) ISC 2021. LNCS, vol. 13118, pp. 26–41. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91356-4_2
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tan, T.G., Zhou, J. (2023). Migrating Blockchains Away from ECDSA for Post-quantum Security: A Study of Impact on Users and Applications. In: Garcia-Alfaro, J., Navarro-Arribas, G., Dragoni, N. (eds) Data Privacy Management, Cryptocurrencies and Blockchain Technology. DPM CBT 2022 2022. Lecture Notes in Computer Science, vol 13619. Springer, Cham. https://doi.org/10.1007/978-3-031-25734-6_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-25734-6_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25733-9
Online ISBN: 978-3-031-25734-6
eBook Packages: Computer ScienceComputer Science (R0)