Skip to main content

Shear Thickening Fluid-Based Protective Structures Against High Velocity Impacts

  • Chapter
  • First Online:
Shear Thickening Fluid
  • 269 Accesses

Abstract

Shear thickening fluid (STF) constitutes a special class of non-Newtonian fluids, which exhibit a transition from low to high viscosity state under shear forces. Due to this unique characteristic of STF, this fluid is extensively used in shock, impact, and vibration mitigation applications. In the last few decades, STF has been integrated into personal protection equipment such as helmets, hip protection pads, and puncture resistant gloves. There is an extensive literature available on STF characterization at low strain rates; however, there is a limited literature about the high strain rate response of STF. To fill this gap, this chapter presents a thorough review on STF-based protective structures against high velocity impacts as well as emphasizing the essential properties in an STF to make it suitable for such applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Gürgen, M.C. Kuşhan, W. Li, The effect of carbide particle additives on rheology of shear thickening fluids. Korea Aust Rheol J. 28(2), 121–128 (2016)

    Article  Google Scholar 

  2. C. Fischer, A. Bennani, V. Michaud, E. Jacquelin, J.A.E. MÃ¥nson, Structural damping of model sandwich structures using tailored shear thickening fluid compositions. Smart Mater. Struct. 19(3), 035017 (2010)

    Article  Google Scholar 

  3. C. Fischer, S.A. Braun, P.E. Bourban, V. Michaud, C.J.G. Plummer, J.A.E. MÃ¥nson, Dynamic properties of sandwich structures with integrated shear-thickening fluids. Smart Mater. Struct. 15(5), 1467 (2006)

    Article  Google Scholar 

  4. S. Gürgen, M.A. Sofuoğlu, Experimental investigation on vibration characteristics of shear thickening fluid filled CFRP tubes. Compos. Struct. 226, 111236 (2019)

    Article  Google Scholar 

  5. S.N. Robinovitch, W.C. Hayes, T.A. McMahon, Energy-shunting hip padding system attenuates femoral impact force in a simulated fall. J. Biomech. Eng 117, 409–413 (1995) http://biomechanical.asmedigitalcollection.asme.org/

    Article  CAS  Google Scholar 

  6. M.J. Decker, C.J. Halbach, C.H. Nam, N.J. Wagner, E.D. Wetzel, Stab resistance of shear thickening fluid (STF)-treated fabrics. Compos. Sci. Technol. 67(3–4), 565–578 (2007)

    Article  CAS  Google Scholar 

  7. S. Gürgen, M.C. Kuşhan, Improvement of spall liner performance with smart fluid applications. Thin-Walled Struct. 180, 109854 (2022)

    Article  Google Scholar 

  8. M.R. Sheikhi, S. Gürgen, Deceleration behavior of multi-layer cork composites intercalated with a non-Newtonian material. Arch. Civ. Mech. Eng 23(1), 1–11 (2023)

    Google Scholar 

  9. V.B.C. Tan, T.E. Tay, W.K. Teo, Strengthening fabric Armour with silica colloidal suspensions. Int. J. Solids Struct. 42(5–6), 1561–1576 (2005 Mar)

    Article  Google Scholar 

  10. S. Gürgen, T. Yıldız, Stab resistance of smart polymer coated textiles reinforced with particle additives. Compos. Struct. 235, 111812 (2020)

    Article  Google Scholar 

  11. S. Gürgen, F.A.O. Fernandes, R.J.A. de Sousa, M.C. Kuşhan, Development of eco-friendly shock-absorbing Cork composites enhanced by a non-Newtonian fluid. Appl. Compos. Mater. 28(1), 165–179 (2021)

    Article  Google Scholar 

  12. D.P. Kalman, R.L. Merrill, N.J. Wagner, E.D. Wetzel, Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle-fluid suspensions. ACS Appl. Mater. Interfaces 1(11), 2602–2612 (2009)

    Article  CAS  Google Scholar 

  13. S. Gürgen, M.C. Kuşhan, The effect of silicon carbide additives on the stab resistance of shear thickening fluid treated fabrics. Mech. Adv. Mater. Struct. 24(16), 1381–1390 (2017)

    Article  Google Scholar 

  14. S.R. Raghavan, S.A. Khan, Shear-thickening response of Fumed silica suspensions under steady and oscillatory shear. J. Colloid Interface Sci. 185, 57 (1997)

    Article  CAS  Google Scholar 

  15. H. Yang, J. Ruan, J. Zou, Q. Wu, Z. Zhou, Z. Zhou, Rheological responses of fumed silica suspensions under steady and oscillatory shear. Sci. China Technol. Sci 52(4), 910–915 (2009 Apr)

    Article  CAS  Google Scholar 

  16. A.S. Lim, S.L. Lopatnikov, J.W. Gillespie, Implementing the Split-Hopkinson pressure bar technique for shear thickening fluid evaluation. AIP Conf Proc 1027, 689–691 (2008)

    Article  Google Scholar 

  17. A.S. Lim, S.L. Lopatnikov, N.J. Wagner, J.W. Gillespie, Phenomenological modeling of the response of a dense colloidal suspension under dynamic squeezing flow. J. Nonnewton Fluid Mech 166(12–13), 680–688 (2011 Jul)

    Article  CAS  Google Scholar 

  18. N. Asija, H. Chouhan, S.A. Gebremeskel, N. Bhatnagar, High strain rate characterization of shear thickening fluids using Split Hopkinson pressure Bar technique. Int J Impact Eng 110, 365–370 (2017a)

    Article  Google Scholar 

  19. N. Asija, H. Chouhan, S.A. Gebremeskel, N. Bhatnagar, Influence of particle size on the low and high strain rate behavior of dense colloidal dispersions of nanosilica. J Nanopart Res. 19(1), 3723 (2017b)

    Article  Google Scholar 

  20. S. Gürgen, The influence of boundary condition on the impact behavior of high performance fabrics. Adv. Electron. Forum 28, 47–54 (2018)

    Article  Google Scholar 

  21. N.K. Naik, P. Shrirao, Composite structures under ballistic impact. Compos. Struct. 66(1–4), 579–590 (2004 Oct)

    Article  Google Scholar 

  22. S.N.A. Safri, M.T.H. Sultan, N. Yidris, F. Mustapha, Low velocity and high velocity impact test on composite materials-a review. Int. J. Eng. Sci 3(9), 50–60 (2014) Available from: www.theijes.com

    Google Scholar 

  23. H. Kolsky, An Investigation of the Mechanical Properties of Materials at very High Rates of Loading. Proc. Phys. Soc. 62, 676–699 (1949)

    Article  Google Scholar 

  24. N.K. Naik, V. Ch, V.R. Kavala, Hybrid composites under high strain rate compressive loading. Mater. Sci. Eng. A 498(1–2), 87–99 (2008)

    Article  Google Scholar 

  25. S.C. Woo, T.W. Kim, High-strain-rate impact in Kevlar-woven composites and fracture analysis using acoustic emission. Compos. Part B Eng 60, 125–136 (2014)

    Article  CAS  Google Scholar 

  26. A.S. Lim, S.L. Lopatnikov, J.W. Gillespie, Development of the split-Hopkinson pressure bar technique for viscous fluid characterization. Polym. Test. 28(8), 891–900 (2009)

    Article  CAS  Google Scholar 

  27. W. Adam, P. Dawid, Z. Pawel, W. Lukasz, K. Joanna, Z. Dorota, et al., Optimization of material systems with shear thickening fluids, in 28th International Symposium on Ballistics. Atlanta, GA, (2014), pp. 1–10

    Google Scholar 

  28. T.C. de Goede, K.G. de Bruin, D. Bonn, High-velocity impact of solid objects on Non-Newtonian Fluids. Sci Rep 9(1), 1250 (2019)

    Article  Google Scholar 

  29. Y.H. Kim, S.K. Sathish Kumar, Y. Park, H. Kwon, C.G. Kim, High-Velocity Impact onto a High-Frictional Fabric Treated with Adhesive Spray Coating and Shear Thickening Fluid Impregnation, vol 185 (Compos B Eng., 2020), p. 107742

    Google Scholar 

  30. R. Wei, B. Dong, F. Wang, J. Yang, Y. Jiang, W. Zhai, et al., Effects of silica morphology on the shear-thickening behavior of shear thickening fluids and stabbing resistance of fabric composites. J. Appl. Polym. Sci. 137(24), 1–7 (2020)

    Article  Google Scholar 

  31. L. Liu, M. Cai, X. Liu, Z. Zhao, W. Chen, Ballistic impact performance of multi-phase STF-impregnated Kevlar fabrics in aero-engine containment. Thin-Wall. Struct 157(29), 107103 (2020). https://doi.org/10.1016/j.tws.2020.107103

    Article  Google Scholar 

  32. H. Cho, J. Lee, S. Hong, S. Kim, Bulletproof performance of composite plate fabricated using shear thickening fluid and natural fiber paper. Appl. Sci. 10(1), 88 (2020)

    Article  Google Scholar 

  33. M. Soutrenon, V. Michaud, J.A.E. Manson, Influence of processing and storage on the shear thickening properties of highly concentrated monodisperse silica particles in polyethylene glycol. Appl. Rheol. 23(5), 20–28 (2013)

    Google Scholar 

  34. R. Żurowski, M. Tryznowski, S. Gürgen, M. Szafran, A. Świderska, The influence of UV radiation aging on degradation of shear thickening fluids. Materials 15(9), 3269 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelanchali Asija Bhalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhalla, N.A. (2023). Shear Thickening Fluid-Based Protective Structures Against High Velocity Impacts. In: Gürgen, S. (eds) Shear Thickening Fluid. Springer, Cham. https://doi.org/10.1007/978-3-031-25717-9_8

Download citation

Publish with us

Policies and ethics