Skip to main content

Shear Thickening Fluid–Based Protective Structures Against Low Velocity Impacts

  • Chapter
  • First Online:
Shear Thickening Fluid

Abstract

Shear thickening fluid (STF)–based protective structures against low velocity impacts are discussed in this chapter. The different approaches adopted by researchers across different domains to improve the energy absorption or performance of STF-treated structures are studied thoroughly. In the first section, a systematic classification is provided to understand the subject matter in detail. Basically, two main routes are identified, one by enhancing the viscosity or shear thickening of the STF and the other, by adjusting the fabric parameters. Both routes aim at improving the interactive effect of STF and fabric structure. Shear thickening can be enhanced by altering the contents of STF either through change in materials, hybridization, or through incorporation of foreign additives. Fabric structure is altered through changes in fabric sett, weave, and architecture. Further, fabric frictional properties can also be enhanced by increasing the roughness of the surface through various means such as plasma treatment and growth of nanostructures, other than STF treatment. This chapter also briefs about the STF treatment procedure for fabrics meant for low velocity impact. Furthermore, this chapter discusses on the responsiveness of STF-treated fabrics against low velocity impact pertaining to knives, spikes, and blunt indenters. Finally, this chapter concludes with a review on the design and sequencing strategies of STF-treated fabrics for soft body armor intended for low velocity impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Laha, A. Majumdar, Shear thickening fluids using silica-halloysite nanotubes to improve the impact resistance of p-aramid fabrics. Appl. Clay Sci. 132–133, 468–474 (2016)

    Article  Google Scholar 

  2. S. Gürgen, M.C. Kuşhan, The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids. Polym. Test. 64, 296–306 (2017)

    Article  Google Scholar 

  3. H. Liu, H. Zhu, K. Fu, et al., High-impact resistant hybrid sandwich panel filled with shear thickening fluid. Compos. Struct. 284, 115208 (2022)

    Article  CAS  Google Scholar 

  4. A. Ghosh, A. Majumdar, B.S. Butola, Modulating the rheological response of shear thickening fluids by variation in molecular weight of carrier fluid and its correlation with impact resistance of treated p-aramid fabrics. Polym. Test. 91, 106830 (2020)

    Article  CAS  Google Scholar 

  5. Y. Ma, Z. Lei, G. Huang, et al., Energy absorption analysis of STF/Kevlar composite fabric based on 3D morphology of impact basin under low-speed impact. Compos. Struct. 283, 115152 (2022). https://doi.org/10.1016/j.compstruct.2021.115152

    Article  CAS  Google Scholar 

  6. A. Majumdar, A. Laha, Effects of fabric construction and shear thickening fluid on yarn pull-out from high-performance fabrics. Text. Res. J. 86, 2056–2066 (2016)

    Article  CAS  Google Scholar 

  7. S. Gürgen, T. Yıldız, Stab resistance of smart polymer coated textiles reinforced with particle additives. Compos. Struct. 235, 111812 (2020). https://doi.org/10.1016/j.compstruct.2019.111812

    Article  Google Scholar 

  8. R.G. Egres Jr., Y.S. Lee, J.E. Kirkwood, et al., “liquid armor”: Protective fabrics utilizing shear thickening fluids. 4th International Conference on Safety and Protective Fabrics, 1–8 (2004)

    Google Scholar 

  9. Y.S. Lee, E.D. Wetzel, R.G. Egres Jr., NJW, Advanced body armor utilizing shear thickening fluids. J. Chem. Inf. Model, 1689–1699 (2013)

    Google Scholar 

  10. N. Wagner, ED. Wetzel, Advanced body armor utilizing shear thickening fluids. US 7.498,276 B2, US, (2009)

    Google Scholar 

  11. U. Mawkhlieng, A. Majumdar, Soft body Armour. Text. Prog. 51, 139–224 (2020)

    Article  Google Scholar 

  12. S. Gürgen, M.C. Kuşhan, W. Li, Shear thickening fluids in protective applications: A review. Prog. Polym. Sci. 75, 48–72 (2017)

    Article  Google Scholar 

  13. U. Mawkhlieng, A. Majumdar, A. Laha, A review of fibrous materials for soft body Armour applications. RSC Adv. 10, 1066–1086 (2020)

    Article  CAS  Google Scholar 

  14. K. Patel, S.H. Chikkali, S. Sivaram, Ultrahigh molecular weight polyethylene: Catalysis, structure, properties, processing and applications. Prog. Polym. Sci. 109, 101290 (2020). https://doi.org/10.1016/j.progpolymsci.2020.101290

    Article  CAS  Google Scholar 

  15. K. Bilisik, Ballistic and stabbing protection: A review. Text Res. 87, 2275–2304 (2017)

    Article  CAS  Google Scholar 

  16. V.B.C. Tan, T.E. Tay, W.K. Teo, Strengthening fabric Armour with silica colloidal suspensions. Int. J. Solids Struct. 42, 1561–1576 (2005)

    Article  Google Scholar 

  17. B.-W.W. Lee, I.-J.J. Kim, C.-G.G. Kim, The influence of the particle size of silica on the ballistic performance of fabrics impregnated with silica colloidal suspension. J. Compos. Mater. 43, 2679–2698 (2009)

    Article  CAS  Google Scholar 

  18. C. Fischer, S.A. Braun, P.E. Bourban, et al., Dynamic properties of sandwich structures with integrated shear-thickening fluids. Smart Mater. Struct. 15, 1467–1475 (2006)

    Article  Google Scholar 

  19. M. Hasanzadeh, V. Mottaghitalab, M. Rezaei, et al., Numerical and experimental investigations into the response of STF-treated fabric composites undergoing ballistic impact. Thin-Walled Struct. 119, 700–706 (2017)

    Article  Google Scholar 

  20. L. Lam, W. Chen, H. Hao, et al., Numerical study of bio-inspired energy-absorbing device using shear thickening fluid (STF). Int. J. Impact Eng. 162, 104158 (2022)

    Article  Google Scholar 

  21. H. Mahfuz, F. Clements, V. Rangari, et al., Enhanced stab resistance of armor composites with functionalized silica nanoparticles. J. Appl. Phys. 105, 3086431 (2009). https://doi.org/10.1063/1.3086431

    Article  CAS  Google Scholar 

  22. S. Arora, A. Majumdar, B.S. Butola, Structure induced effectiveness of shear thickening fluid for modulating impact resistance of UHMWPE fabrics. Compos. Struct. 210, 41–48 (2018)

    Article  Google Scholar 

  23. U. Mawkhlieng, M. Gupta, A. Majumdar, An exposition of shear thickening fluid treated double and 3D woven fabrics with a new integrity factor for enhanced impact resistance. Compos. Struct. 270, 114086 (2021)

    Article  CAS  Google Scholar 

  24. Q. Hu, G. Lu, N. Hameed, et al., Dynamic compressive behaviour of shear thickening fluid-filled honeycomb. Int. J. Mech. Sci. 229, 107493 (2022)

    Article  Google Scholar 

  25. A. Khodadadi, G. Liaghat, A. Taherzadeh-Fard, et al., Impact characteristics of soft composites using shear thickening fluid and natural rubber–a review of current status. Compos. Struct. 271, 114092 (2021)

    Article  CAS  Google Scholar 

  26. T.A. Strivens, The shear thickening effect in concentrated dispersion systems. J. Colloid Interface Sci. 57, 476–487 (1976)

    Article  CAS  Google Scholar 

  27. A. Srivastava, A. Majumdar, B.S. Butola, Improving the impact resistance performance of Kevlar fabrics using silica based shear thickening fluid. Mater. Sci. Eng. A 529, 224–229 (2011)

    Article  CAS  Google Scholar 

  28. D.P. Kalman, R.L. Merrill, N.J. Wagner, et al., Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle-fluid suspensions. ACS Appl. Mater. Interfaces 1, 2602–2612 (2009)

    Article  CAS  Google Scholar 

  29. D.P. Kalman, J.B. Schein, J.M. Houghton, et al., Polymer dispersion based shear thickening fluid-fabrics for protective applications. Int. SAMPE Symp Exhib. 52, 1–9 (2007)

    Google Scholar 

  30. J. Ding, P. Tracey, W. Li, et al., Review on shear thickening fluids and applications. Text. Light Ind. Sci. Technol. 2, 161–173 (2013)

    Google Scholar 

  31. X. Gong, Y. Xu, W. Zhu, et al., Study of the knife stab and puncture-resistant performance for shear thickening fluid enhanced fabric. J. Compos. Mater. 48, 641–657 (2014)

    Article  Google Scholar 

  32. Y.L. Xua, X.L. Gong, C. Peng, et al., Shear thickening fluids based on additives with different concentrations and molecular chain lengths. Chinese J. Chem. Phys. 23, 342–346 (2010)

    Article  Google Scholar 

  33. H.S. Son, K.H. Kim, J.H. Kim, et al., High-performance shear thickening of polystyrene particles with poly(HEMA). Colloid Polym. Sci. 296, 1591–1598 (2018)

    Article  CAS  Google Scholar 

  34. H.S. Son, K.H. Kim, J.H. Song, et al., Enhanced shear thickening of polystyrene-poly(acrylamide) and polystyrene-poly(HEMA) particles. Colloid Polym. Sci. 297, 95–105 (2019)

    Article  CAS  Google Scholar 

  35. Q. Chen, W. Zhu, F. Ye, et al., PH effects on shear thickening behaviors of polystyrene-ethylacrylate colloidal dispersions. Mater. Res. Express 1, 015303 (2014). https://doi.org/10.1088/2053-1591/1/1/015303

    Article  CAS  Google Scholar 

  36. U. Mawkhlieng, A. Majumdar, Deconstructing the role of shear thickening fluid in enhancing the impact resistance of high-performance fabrics. Compos. Part B Eng. 175, 107167 (2019)

    Article  CAS  Google Scholar 

  37. B. Alince, P. Lepoutre, Viscosity, packing density and optical properties of pigment blends. Colloids Surf. 6, 155–165 (1983)

    Article  CAS  Google Scholar 

  38. A. Ghosh, A. Majumdar, B.S. Butola, Role of surface chemistry of fibres additives on rheological behavior of ceramic particle based shear thickening fluids. Ceram. Int. 44, 21514–21524 (2018)

    Article  CAS  Google Scholar 

  39. S. Gürgen, W. Li, M.C. Kuşhan, The rheology of shear thickening fluids with various ceramic particle additives. Mater. Des. 104, 312–319 (2016)

    Article  Google Scholar 

  40. M. Zojaji, A. Hydarinasab, S.H. Hashemabadi, et al., Rheological behaviour of shear thickening fluid of graphene oxide and SiO2 polyethylene glycol 400-based fluid with molecular dynamic simulation. Mol. Simul. 47, 317–325 (2021)

    Article  CAS  Google Scholar 

  41. L. Liu, M. Cai, X. Liu, et al., Ballistic impact performance of multi-phase STF-impregnated Kevlar fabrics in aero-engine containment. Thin-Walled Struct. 157, 107103 (2020)

    Article  Google Scholar 

  42. M. Hasanzadeh, V. Mottaghitalab, Tuning of the rheological properties of concentrated silica suspensions using carbon nanotubes. Rheol. Acta 55, 759–766 (2016)

    Article  CAS  Google Scholar 

  43. S. Gürgen, M.C. Kuşhan, W. Li, The effect of carbide particle additives on rheology of shear thickening fluids. Korea Aust. Rheol. J. 28, 121–128 (2016)

    Article  Google Scholar 

  44. S. Gürgen, M.C. Kuşhan, The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives. Compos. Part A Appl. Sci. Manuf. 94, 50–60 (2017)

    Article  Google Scholar 

  45. A. Laha, A. Majumdar, Shear thickening fluids using silica-halloysite nanotubes to improve the impact resistance of p-aramid fabrics. Appl. Clay Sci. 132–133, 468–474 (2017)

    Google Scholar 

  46. U. Mawkhlieng, A. Majumdar, D. Bhattacharjee, Graphene reinforced multiphase shear thickening fluid for augmenting low velocity ballistic resistance. Fibers Polym. 22, 213–221 (2021)

    Article  CAS  Google Scholar 

  47. A. Laha, A. Majumdar, Interactive effects of p -aramid fabric structure and shear thickening fl uid on impact resistance performance of soft armor materials. Mater. Des 89, 286–293 (2016)

    Article  CAS  Google Scholar 

  48. M. Bajya, A. Majumdar, B.S. Butola, et al., Design strategy for optimising weight and ballistic performance of soft body Armour reinforced with shear thickening fluid. Compos. Part B 183, 107721 (2020)

    Article  CAS  Google Scholar 

  49. A. Laha, A. Majumdar, I. Biswas, et al., Role of fabric geometry in ballistic performance of flexible Armour panels. Procedia Eng. 173, 747–754 (2017)

    Article  Google Scholar 

  50. C.K. Chu, Y.L. Chen, Ballistic-proof effects of various woven constructions. Fibres Text. East. Eur 83, 63–67 (2010)

    Google Scholar 

  51. M. Shimek, E. Fahrenthold. Effects of weave type on ballistic performance for aramid, UHMWPE, and hybrid fabrics. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1–12

    Google Scholar 

  52. F. Boussu, I. Cristian, S. Nauman, General definition of 3D warp interlock fabric architecture. Compos. Part B Eng. 81, 171–188 (2015)

    Article  Google Scholar 

  53. S. Arora, A. Majumdar, B.B. Singh, Interplay of fabric structure and shear thickening fluid impregnation in moderating the impact response of high-performance woven fabrics. J. Compos. Mater. 54, 4387–4395 (2020)

    Article  Google Scholar 

  54. Y.Yang, Study on ballistic performance of hybrid soft Body armour. Ph.D. Thesis. University of Manchester, (2015). https://www.research.manchester.ac.uk/portal/files/61848779/FULL_TEXT.PDF

  55. J.L. Park, B.I. Yoon, J.G. Paik, et al., Ballistic performance of p -aramid fabrics impregnated with shear thickening fluid; Part I–Effect of laminating sequence. Text. Res. J. 82, 527–541 (2012)

    Article  CAS  Google Scholar 

  56. J.L. Park, Y.S. Chi, T.J. Kang, Ballistic performance of hybrid panels composed of uni-directional/woven fabrics. Text. Res. J. 83, 471–486 (2013)

    Article  CAS  Google Scholar 

  57. M. Bajya, A. Majumdar, B.S. Butola, et al., Mitigating the blunt trauma of soft Armour panels using polycarbonate sheets: A cost-effective solution. Appl. Compos. Mater. 28, 1089–1109 (2021)

    Article  Google Scholar 

  58. M. Bajya, A. Majumdar, B.S. Butola, et al., Efficacy of various structural forms of disentangled polyethylene laminates against low velocity impact. J. Thermoplast. Compos. Mater. (2022). https://doi.org/10.1177/08927057221145573

  59. M. Karahan, A. Jabbar, N. Karahan, Ballistic impact behavior of the aramid and ultra-high molecular weight polyethylene composites. J. Reinf. Plast. Compos. 34, 37–48 (2015)

    Article  CAS  Google Scholar 

  60. F. Boussu, T. Kanit, D. Crepin, et al., Behaviour of a warp interlock fabric subjected to ballistic impact : Experimental analysis. 12th World Text Conf. AUTEX, 1–7 (2012)

    Google Scholar 

  61. X. Chen, D. Sun, Y. Wang, et al., 2D/3D woven fabrics for ballistic protection. 4th World Conf. 3D Fabr. Their Appl., 1–12 (2012)

    Google Scholar 

  62. V.D. Mishra, A. Mishra, A. Singh, et al., Ballistic impact performance of UHMWP fabric impregnated with shear thickening fluid nanocomposite. Compos. Struct. 281, 114991 (2022)

    Article  CAS  Google Scholar 

  63. F. Boussu, I. Cristian, S. Nauman, et al., Effect of 3D-weave architecture on strength transfer from tow to textile composite. 2nd World Conf 3D Fabr. their Appl., 2–8 (2009)

    Google Scholar 

  64. M.A. Abtew, F. Boussu, P. Bruniaux, et al., Engineering of 3D warp interlock p-aramid fabric structure and its energy absorption capabilities against ballistic impact for body Armour applications. Compos. Struct. 225, 111179 (2019)

    Article  Google Scholar 

  65. U. Mawkhlieng, A. Majumdar, Designing of hybrid soft body Armour using high-performance unidirectional and woven fabrics impregnated with shear thickening fluid. Compos. Struct. 253, 112776 (2020)

    Article  Google Scholar 

  66. Z. Lu, X. Jing, B. Sun, et al., Compressive behaviors of warp-knitted spacer fabrics impregnated with shear thickening fluid. Compos. Sci. Technol. 88, 184–189 (2013)

    Article  CAS  Google Scholar 

  67. A. Srivastava, A. Majumdar, B.S. Butola, Improving the impact resistance of textile structures by using shear thickening fluids: A review. Crit. Rev. Solid State Mater. Sci. 37, 115–129 (2012)

    Article  CAS  Google Scholar 

  68. G. Nilakantan, J.W. Gillespie, Yarn pull-out behavior of plain woven Kevlar fabrics: Effect of yarn sizing, pullout rate, and fabric pre-tension. Compos. Struct. 101, 215–224 (2013)

    Article  Google Scholar 

  69. M. Bajya, A. Majumdar, B.S. Butola, Criticality of inter-yarn friction in high-performance fabrics for the design of soft body Armour. Compos. Commun. 29, 100984 (2022)

    Article  Google Scholar 

  70. M V, Chitrangad, Nelson PEA. Hybrid ballisitc fabric. US5187003A, US, (1993)

    Google Scholar 

  71. Y. Chu, Surface Modification to Aramid and UHMWPE Fabrics to Increase Inter-Yarn Friction for Improved Ballistic Performance.PhD Thesis (University of Manchester, 2015). https://www.escholar.manchester.ac.uk/uk-ac-man-scw:264414

    Google Scholar 

  72. Y. Chu, X. Chen, L. Tian, Modifying friction between ultra-high molecular weight polyethylene (UHMWPE) yarns with plasma enhanced chemical vapour deposition (PCVD). Appl. Surf. Sci. 406, 77–83 (2017)

    Article  CAS  Google Scholar 

  73. H.S. Hwang, M.H. Malakooti, B.A. Patterson, et al., Increased interyarn friction through ZnO nanowire arrays grown on aramid fabric. Compos. Sci. Technol. 107, 75–81 (2015)

    Article  CAS  Google Scholar 

  74. S. Arora, A. Majumdar, B.S. Butola, Deciphering the structure-induced impact response of ZnO nanorod grafted UHMWPE woven fabrics. Thin-Walled Struct. 156, 106991 (2020)

    Article  Google Scholar 

  75. D. Sun, X. Chen, Plasma modification of Kevlar fabrics for ballistic applications. Text. Res. J. 82, 1928–1934 (2012)

    Article  Google Scholar 

  76. Y. Chu, X. Chen, D.W. Sheel, et al., Surface modification of aramid fibers by atmospheric pressure plasma-enhanced vapor deposition. Text. Res. J. 84, 1288–1297 (2014)

    Article  Google Scholar 

  77. A. Hazarika, B.K. Deka, D.Y. Kim, et al., Growth of aligned ZnO nanorods on woven Kevlar® fiber and its performance in woven Kevlar® fiber/polyester composites. Compos. Part A Appl. Sci. Manuf. 78, 284–293 (2015)

    Article  CAS  Google Scholar 

  78. P. Dixit, A. Ghosh, A. Majumdar, Hybrid approach for augmenting the impact resistance of p-aramid fabrics: Grafting of ZnO nanorods and impregnation of shear thickening fluid. J Mater Sci. 54, 13106–13117 (2019). https://doi.org/10.1007/s10853-019-03830-z

    Article  CAS  Google Scholar 

  79. Y.S. Lee, E.D. Wetzel, N.J. Wagner, The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid. J. Mater. Sci. 38, 2825–2833 (2003)

    Article  CAS  Google Scholar 

  80. A. Majumdar, B.S. Butola, A. Laha, et al., Improving the impact resistance of p-aramid fabrics by sequential impregnation with shear thickening fluid. Fibers Polym. 17, 0–6 (2016)

    Article  CAS  Google Scholar 

  81. M. Bajya, A. Majumdar, B.S. Butola, et al., Parametric optimisation of shear thickening fluid treatment for ultra-high molecular weight polyethylene woven fabric. J. Ind. Text. 52, 152808372211267 (2022)

    Article  Google Scholar 

  82. Ballistic Resistance of Body Armor, NIJ standard-0101.07.2018

    Google Scholar 

  83. M.J.J. Decker, C.J. Halbach, C.H. Nam, et al., Stab resistance of shear thickening fluid (STF)-treated fabrics. Compos. Sci. Technol. 67, 565–578 (2006)

    Article  Google Scholar 

  84. A. Majumdar, B.S. Butola, A. Srivastava, An analysis of deformation and energy absorption modes of shear thickening fluid treated Kevlar fabrics as soft body Armour materials. Mater. Des. 51, 148–153 (2013)

    Article  CAS  Google Scholar 

  85. https://www.baesystems.com/en-ca/article/liquid-armour-to-become-a-future-choice-for-protecting-soldiers

  86. M. Wei, K. Lin, L. Sun, Shear thickening fluids and their applications. Mater. Des. 216, 110570 (2022)

    Article  CAS  Google Scholar 

  87. R. Nayak, I. Crouch, S. Kanesalingam, et al., Body armor for stab and spike protection, part 1: Scientific literature review. Text. Res. J. 88, 812–832 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Majumdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mawkhlieng, U., Bajya, M., Majumdar, A. (2023). Shear Thickening Fluid–Based Protective Structures Against Low Velocity Impacts. In: Gürgen, S. (eds) Shear Thickening Fluid. Springer, Cham. https://doi.org/10.1007/978-3-031-25717-9_7

Download citation

Publish with us

Policies and ethics