Skip to main content

Ecological Risks Related to the Influence of Different Environmental Parameters on the Microplastics Behavior

  • Chapter
  • First Online:
Advanced Technology for Smart Environment and Energy

Part of the book series: Environmental Science and Engineering ((ESE))

Abstract

Microplastics found in continental surface waters have various sources, from cosmetics to agriculture. In addition, it is difficult to estimate the quantity of microplastics that reach the oceans each year, mainly transported by rivers but also by air. Therefore there is unquantifiable toxicity. In terms of occurrence, numerous studies have confirmed the ubiquitous and abundant nature of contamination caused by microplastics in continental water surfaces, sediment and biota. Regarding the ecotoxicological impact, it seems that the shape of the microplastics plays a role. Indeed, microfibers seem to have more harmful effects than microbeads. Besides the form, the chemical contaminants initially present or adsorbed on the particles, and the organisms that colonize their surface also represent a potential danger associated with the presence of microplastics in water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrouki Y, Mabrouki J, Anouzla A, Rifi SK, Zahiri Y, Nehhal S, Souabi S (2021) Optimization and modeling of a fixed-bed biosorption of textile dye using agricultural biomass from the moroccan sahara. Desalin Water Treat 240:144–151

    Google Scholar 

  • Alimi OS, Farner Budarz J, Hernandez LM, Tufenkji N (2018) Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ Sci Technol 52:1704–1724

    CAS  Google Scholar 

  • Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605

    CAS  Google Scholar 

  • Arthur C, Baker J, Bamford H (2009) Proceedings of the international research workshop on the occurrence, effects, and fate of microplastic marine debris. NOAA Tech Memo 49:9–11

    Google Scholar 

  • Bakir A, O’Connor IA, Rowland SJ, Hendriks AJ, Thompson RC (2016) Relative importance of microplastics as a pathway for the transfer of hydrophobic organic chemicals to marine life. Environ Pollut 219:56–65

    CAS  Google Scholar 

  • Barboza LGA, Vieira LR, Branco V, Carvalho C, Guilhermino L (2018) Microplastics increase mercury bioconcentration in gills and bioaccumulation in the liver, and cause oxidative stress and damage in dicentrarchus labrax juveniles. Sci Rep 8:15655

    Google Scholar 

  • Benchrifa M, Mabrouki J (2022) Simulation, sizing, economic evaluation and environmental impact assessment of a photovoltaic power plant for the electrification of an establishment. Adv Build Energy Res :1–18.

    Google Scholar 

  • Benchrifa M, Mabrouki J, Elouardi M, Azrour M, Tadili R (2022) Detailed study of dimensioning and simulating a grid-connected PV power station and analysis of its environmental and economic effect, case study. Model Earth Syst Environ :1–9.

    Google Scholar 

  • Brennecke D, Duarte B, Paiva F, Caçador I, Canning-Clode J (2016) Microplastics as vector for heavy metal contamination from the marine environment. Estuar Coast Shelf Sci 178:189–195

    CAS  Google Scholar 

  • Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment : a review. Mar Pollut Bull 62:2588–2597

    CAS  Google Scholar 

  • De Tender C, Devriese LI, Haegeman A, Maes S, Vangeyte J, Cattrijsse A (2017) Temporal dynamics of bacterial and fungal colonization on plastic debris in the north sea. Environ Sci Technol 51:7350–7360

    Google Scholar 

  • De Tender CA, Devriese LI, Haegeman A, Maes S, Ruttink T, Dawyndt P, Regraguy B, Ellouzi I, Mabrouki J, Rahmani M, Drhimer F, Mahmou C, El Hajjaji S (2022). Zinc doping of different nanoparticles of TiO2 sachtopore for improved elimination of the methyl orange by photocatalysis. Emergent Mater :1–14.

    Google Scholar 

  • Ekvall MT, Lundqvist M, Kelpsiene E, Šileikis E, Gunnarsson SB, Cedervall T (2019) Nanoplastics formed during the mechanical breakdown of daily-use polystyrene products. Nanoscale Adv. 1:1055–1061

    CAS  Google Scholar 

  • El Alouani M, Aouan B, Rachdi Y, Alehyen S, El Herradi EH, Saufi H, Barka N (2022) Porous geopolymers as innovative adsorbents for the removal of organic and inorganic hazardous substances: a mini-review. Int J Environ Anal Chem :1–13.

    Google Scholar 

  • Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ, Borerro JC (2014) Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9:1–15

    Google Scholar 

  • Fattah G, Ghrissi F, Mabrouki J, Kabriti M (2021) Control of physicochemical parameters of spring waters near quarries exploiting limestone rock. In: E3S Web of Conferences, vol 234. EDP Sciences, p 00018.

    Google Scholar 

  • Fossi MC, Coppola D, Baini M, Giannetti M, Guerranti C, Marsili L (2014) Large filter feeding marine organisms as indicators of microplastic in the pelagic environment: the case studies of the Mediterranean basking shark (Cetorhinus maximus) and fin whale (Balaenoptera physalus). Mar Environ Res 100:17–24

    CAS  Google Scholar 

  • Fotopoulou KN, Karapanagioti HK (2012) Surface properties of beached plastic pellets. Mar Environ Res 81:70–77

    CAS  Google Scholar 

  • Frère L, Maignien L, Chalopin M, Huvet A, Rinnert E, Morrison H (2018) Microplastic bacterial communities in the bay of brest: influence of polymer type and size. Environ Pollut 242:614–625

    Google Scholar 

  • Galloway TS, Cole M, Lewis C (2017) Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1:0116

    Google Scholar 

  • Gewert B, Plassmann MM, MacLeod M (2015) Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Process Impacts 17:1513–1521

    CAS  Google Scholar 

  • Ghizlane F, Mabrouki J, Ghrissi F, Azrour M (2022) Proposal for a high-resolution particulate matter (PM10 and PM2. 5) capture system, comparable with hybrid system-based internet of things: case of quarries in the western rif, Morocco. Pollut 8(1), 169–180.

    Google Scholar 

  • Gigault J, Ter Halle A, Baudrimont M, Pascal P, Gauffre F, Phi T-L (2018) Current opinion: what is a nanoplastic? Environ Pollut 235:1030–1034

    CAS  Google Scholar 

  • Goldstein MC, Rosenberg M, Cheng L (2012) Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect. Biol Lett 8:817–820

    Google Scholar 

  • Hu Y, Gong M, Wang J, Bassi A (2019) Current research trends on microplastic pollution from wastewater systems: a critical review. Rev Environ Sci Bio/Technol 18:207–230

    Google Scholar 

  • Kim HY, Lee IS, Oh JE (2017) Human and veterinary pharmaceuticals in the marine environment including fish farms in korea. Sci Total Environ 9:579–940

    Google Scholar 

  • Kooi M, Van Nes EH, Scheffer M, Koelmans AA (2017) Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics. Environ Sci Technol 51:7963–7971

    CAS  Google Scholar 

  • Long M, Moriceau B, Gallinari M, Lambert C, Huvet A, Raffray J (2015) Interactions between microplastics and phytoplankton aggregates: impact on their respective fates. Mar Chem 175:39–46

    CAS  Google Scholar 

  • Loukili H, Anouzla A, Jioui I, Achiou B, Alami Younssi S, Azoulay K, Riadi Y (2022) Combining multiple regression and principal component analysis to evaluate the effects of ambient air pollution on children’s respiratory diseases. Int J Inf Technol 14(3):1305–1310

    Google Scholar 

  • Loukilia H, Mabroukic J, Anouzlab A, Kouzia Y, Younssia SA, Diguab K, Abroukic Y (2021) Pre-treated Moroccan natural clays: application to the wastewater treatment of textile industry. DESALINATION AND WATER TREATMENT 240:124–136

    Google Scholar 

  • Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899

    CAS  Google Scholar 

  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci 105:14265–14270

    CAS  Google Scholar 

  • Mabrouki J, Azrour M, Hajjaji SE (2021) Use of internet of things for monitoring and evaluating water’s quality: a comparative study. Int J Cloud Comput 10(5–6):633–644

    Google Scholar 

  • Mabrouki J, Fattah G, Al-Jadabi N, Abrouki Y, Dhiba D, Azrour M, Hajjaji SE (2022a) Study, simulation and modulation of solar thermal domestic hot water production systems. Model Earth Syst Environ 8(2):2853–2862

    Google Scholar 

  • Mabrouki J, El Yadini A, Bencheikh I, Azoulay K, Moufti A, El Hajjaji S (2018) Hydrogeological and hydrochemical study of underground waters of the tablecloth in the vicinity of the controlled city dump mohammedia (Morocco). In: International Conference on Advanced Intelligent Systems for Sustainable Development. Springer, Cham, pp 22–33.

    Google Scholar 

  • Mabrouki J, Bencheikh I, Azoulay K, Es-Soufy M, El Hajjaji S (2019). Smart monitoring system for the long-term control of aerobic leachate treatment: dumping case Mohammedia (Morocco). In: International Conference on Big Data and Networks Technologies. Springer, Cham, pp 220–230.

    Google Scholar 

  • Mabrouki J, Benbouzid M, Dhiba D, El Hajjaji S (2020) Simulation of wastewater treatment processes with bioreactor membrane reactor (MBR) treatment versus conventional the adsorbent layer-based filtration system (LAFS). Int J Environ Anal Chem :1–11.

    Google Scholar 

  • Mabrouki J, Azoulay K, Elfanssi S, Bouhachlaf L, Mousli F, Azrour M, Hajjaji SE (2022b) Smart system for monitoring and controlling of agricultural production by the IoT. IoT and smart devices for sustainable environment. Springer, Cham, pp 103–115.

    Google Scholar 

  • Mai H, Morin B, Cachot J (2013) Toxic effects of copper and cadmium on fertilization potency of gametes of Pacific oyster (Crassostrea gigas). J Xenobiotics 3:9

    Google Scholar 

  • McCormick A, Hoellein TJ, Mason SA, Schluep J, Kelly JJ (2014) Microplastic is an abundant and distinct microbial habitat in an urban river. Environ Sci Technol 48:11863–11871

    CAS  Google Scholar 

  • Mgalaa S, Mabrouki J, Elouardi M, El Azzouzi L, Moufti A, El Hajjaji S, El Belghiti MA (2022) Study and evaluation of the degradation of procion blue dye by the ozonation method: parametric and isothermal study. Nanotechnol Environ Eng :1–7.

    Google Scholar 

  • Michels J, Stippkugel A, Lenz M, Wirtz K, Engel A (2018) Rapid aggregation of biofilmcovered microplastics with marine biogenic particles. Proc R Soc B Biol Sci. 285:20181203

    Google Scholar 

  • Moore C, Moore S, Weisberg S, Lattin G, Zellers A (2002) A comparison of neustonic plastic and zooplankton abundance in southern california’s coastal waters. Mar Pollut Bull 44:1035–1038

    CAS  Google Scholar 

  • Paul-Pont I, Tallec K, Gonzalez-Fernandez C, Lambert C, Vincent D, Mazurais D (2018) Constraints and priorities for conducting experimental exposures of marine organisms to microplastics. Front Mar Sci 5:1–22

    Google Scholar 

  • Peeken I, Primpke S, Beyer B, Gütermann J, Katlein C, Krumpen T (2018) Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat Commun 9:1505

    Google Scholar 

  • Porter A, Lyons BP, Galloway TS, Lewis C (2018) Role of marine snows in microplastic fate and bioavailability. Environ Sci Technol 52:7111–7119

    CAS  Google Scholar 

  • Prunier J, Maurice L, Perez E, Gigault J, Pierson Wickmann A-C, Davranche M (2019) Trace metals in polyethylene debris from the North Atlantic subtropical gyre. Environ Pollut 245:371–379

    CAS  Google Scholar 

  • Rahmani M, Mabrouki J, Regraguy B, Moufti A, El’Mrabet M, Dahchour A, El Hajjaji S (2021) Adsorption of (methylene blue) onto natural oil shale: kinetics of adsorption, isotherm and thermodynamic studies. Int J Environ Anal Chem :1–15.

    Google Scholar 

  • Ramesh R, Chen Z, Cummins V (2015) Land-ocean interactions in the coastal zone : past, present and future. Anthropocene 12:85–98

    Google Scholar 

  • Rehse S, Kloas W, Zarfl C (2016) Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna. Chemosphere 153:91–99

    CAS  Google Scholar 

  • Rochman CM, Hoh E, Hentschel BT, Kaye S (2013) Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris. environ sci technol 47:130109073312009

    Google Scholar 

  • Samghouli N, Bencheikh I, Azoulay K, Abahdou FZ, Mabrouki J, Hajjaji SE (2022) Study of piroxicam removal from wastewater by artichoke waste using nemrodW® software: statistical analysis. IoT and smart devices for sustainable environment. Springer, Cham, pp 29–42.

    Google Scholar 

  • Ter Halle A, Jeanneau L, Martignac M, Jardé E, Pedrono B, Brach L (2017) Nanoplastic in the north atlantic subtropical gyre. Environ Sci Technol 51:13689–13697

    Google Scholar 

  • Van Cauwenberghe L, Devriese L, Galgani F, Robbens J, Janssen CR (2015) Microplastics in sediments: a review of techniques, occurrence and effects. Mar Environ Res 111:5–17

    Google Scholar 

  • Van Sebille E, Wilcox C, Lebreton L, Maximenko N, Hardesty BD, van Franeker JA (2015) A Glob Inven Small Float 10:124006

    Google Scholar 

  • Velzeboer I, Kwadijk CJAF, Koelmans AA (2014) Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes. Environ Sci Technol 48:4869–4876

    CAS  Google Scholar 

  • Wegner A, Besseling E, Foekema EM, Kamermans P, Koelmans AA (2012) Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.). Environ Toxicol Chem 31:2490–2497.

    Google Scholar 

  • Weltje L, Sumpter JP (2017) What makes a concentration environmentally relevant? critique and a proposal. Environ Sci Technol 51:11520–11521

    CAS  Google Scholar 

  • Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L (2016) A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res 23:8244–8259

    CAS  Google Scholar 

  • Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol 47:130619162220002

    Google Scholar 

  • Ziajahromi S, Neale PA; Leusch FDL (2016) Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms. Water Sci Technol J Int Assoc Water Pollut Res 74(10):2253–2269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imane Bencheikh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bencheikh, I., Azoulay, K., Ben Baaziz, M., Mabrouki, J. (2023). Ecological Risks Related to the Influence of Different Environmental Parameters on the Microplastics Behavior. In: Mabrouki, J., Mourade, A., Irshad , A., Chaudhry, S. (eds) Advanced Technology for Smart Environment and Energy. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-25662-2_10

Download citation

Publish with us

Policies and ethics