Skip to main content

A State of Art Overwiew on Wrist Rehabilitation Exoskeletons

  • Conference paper
  • First Online:
Proceedings of SYROM 2022 & ROBOTICS 2022 (IISSMM 2022)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 127))

  • 217 Accesses

Abstract

Exoskeleton-type robotic systems have been of great interest in scientific research in recent years, due to the many applications in which they can be used. They can be found in industry to enhance the physical abilities of the human operator such as speed and strength, in the military, where in addition to enhancing physical abilities, it also provides protection for the operator and in the medical field, in rehabilitation applications where it provides support. and assistance in performing various movements. In this paper, the focus is on exoskeleton robotic devices used to rehabilitate the upper limb for patients recovering from a stroke. There will be a review in the literature for the latest devices developed, they will be classified according to the number of degrees of freedom rendered and respectively the type of drive system used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Puthenpurakal, A., Crussell, J.: Stroke 1: definition, burden, risk factors and diagnosis. In: Nursing Times, (2017)

    Google Scholar 

  2. Go, A.S., Mozaffarian, D., Roger, V.L., Benjamin, E.J., Berry, J.D., Borden, W.B., et al.: Heart disease and stroke statistics. In: American heart association, (2016)

    Google Scholar 

  3. Townsend, K.W.N., Bhatnagar, P., Smolina, K., Nichols, M., Leal, J., Luengo-Fernandez, R. Rayner, M.: Coronary heart disease statistics. In: British heart foundation, (2012)

    Google Scholar 

  4. Rehmat, N., Zuo, J., Meng, W. et al.: Upper limb rehabilitation using robotic exoskeleton systems: a systematic review. Int. J. Intell. Robot. Appl., (2018)

    Google Scholar 

  5. Chen, J., Zhu, Q., Yu, L., Li, Y., Jia, S., Zhang, Z.: Stroke risk factors of stroke patients in China: A nationwide community-based cross-sectional study. Int. J. Environ. Res. Public Health, (2022)

    Google Scholar 

  6. Townsend, N., Nichols, M., Luengo-Fernandez, R., Leal, J., Gray, A., Scarborough, P., Rayner, M.: European cardiovascular disease statistics. Eur. Hear. Netw. AISBL, (2012)

    Google Scholar 

  7. Tsugawa, Y., Kumamaru, H., Yasunaga, H., Hashimoto, H., Horiguchi, H., Ayanian, J. Z.: The association of hospital volume with mortality and costs of care for stroke in Japan. In: National Library of Medicine, (2013)

    Google Scholar 

  8. http://www.stroke.org.nz/stroke-facts-and-fallacies—Accessed in 20 June 2022.

  9. Lindsay, M.P., Norrving, B., Sacco, R.L., Brainin, M., Hacke, W., Martins, S., Pandian, J., Feigin, V.: Global stroke fact sheet. In: National library of Medicine, (2019)

    Google Scholar 

  10. https://www.safestroke.eu/wp-content/uploads/2020/10/01-At_What_Cost_EIOS_Factsheet.pdf Accesed in 01 July 2022

  11. https://www.socialstyrelsen.se/globalassets/sharepointdokument/artikelkatalog/statistik/2021-12-7644.pdf. Accesed in 01 July 2022

  12. Gull, M.A., Bai, S., Bak, T.: A review on design of upper limb exoskeletons. Robotics, (2020)

    Google Scholar 

  13. Gopura, R.C., Kiguchi, K., Bandara, S.V.: A brief review on upper extremity robotic exoskeleton systems. In: Industrial and information systems, (2011)

    Google Scholar 

  14. Pezent, E., Rose, C., Deshpande, A., Omalley, M.: Design and characterization of the OpenWrist: A robotic wrist exoskeleton for coordinated hand-wrist rehabilitation. In: International conference on rehabilitations robotics IEEE Xplore, (2017)

    Google Scholar 

  15. Esmaeili, M., Dailey, W., Burdet, E., Campolo, D.: Ergonomic design of a wrist exoskeleton and its effects on natural motor strategies during redundant tasks. In: IEEE International conference on robotics and automation, (2013)

    Google Scholar 

  16. Kazerooni, H.: Exoskeletons for human performance augmentation. In: Springer hand- book of robotics, (2008)

    Google Scholar 

  17. Song, Z., Guo, S.: Design process of exoskeleton rehabilitation device and implemen tation of bilateral upper limb motor movement. J. Med. Biol. Eng., 2011

    Google Scholar 

  18. Meng, W., Sheng, B., Klinger, M., Liu, Q., Zhou, Z., Xie, S.Q.: Design and control of a robotic wrist orthosis for joint rehabilitation. In: IEEE/ASME (AIM) International conference on advanced intelligent mechatronics, (2015)

    Google Scholar 

  19. Ates, S., Mora-Moreno, I., Wessels, M., Stienen, A.: Combined active wrist and hand orthosis for home use: Lessons learned. In: Conference: Rehabilitation robotics (ICORR), (2015)

    Google Scholar 

  20. Ates, S., Lobo-Prat, J., Lammertse, P.,vad der Koji, H., Stenen, A.H.A.: SCRIPT passive orthosis: Design and technical evaluation of the wrist and hand orthosis for rehabilitation training at home. In: IEEE international conference on rehabilitation robotics, (2013)

    Google Scholar 

  21. Ates, S., Haarman, C.J., Stenen, A.H.A.: SCRIPT passive orthosis: design of interactive hand and wrist exoskeleton for rehabilitation at home after stroke. Auton. Robot., (2017)

    Google Scholar 

  22. Nam, H.S., Koh, S., Kim, Y.J., Beom, J., Lee, W.H., Lee, S.U., Kim, S.: Biomechanical reactions of exoskeleton neurorehabilitation robots in spastic elbows and wrists. In: IEEE Transactions on neural systems and rehabilitation engineering, (2017)

    Google Scholar 

  23. Hussain, S., Jamwal, P.K., Van Vliet, P., Ghyesh, M.H.: State of the art robotic devices for wrist rehabilitation: Design and control aspects. In: IEEE Transactions on human-machine systems, (2020)

    Google Scholar 

  24. Lambelet, C., Lyu, M., Wenderoth, N., Woolley, D., Gassert, R.: The eWrist—A wearable wrist exoskeleton with sEMG-based force control for stroke rehabilitation. In: IEEE International conference on rehabilitation Robotics, (2017)

    Google Scholar 

  25. Visconti, P., Gaetani, F., Zappatore, G.A., Primiceri, P.: Technical features and functionalities of Myo armband: An overview on related literature and advanced appli cations of myoelectric armbands mainly focused on arm prostheses. Int. J. Smart Sens. Intell. Syst., 2018

    Google Scholar 

  26. Lambelet, C., Temiraliuly, D., Siegenthaler, M., Wirth, M., Woolley, D.G., Lambercy, O., Gassert, R., Wenderoth, N.: Characterization and wearability evaluation of a fully porta ble wrist exoskeleton for unsupervised training after stroke. J. NeuroEngineering Rehabil., (2020)

    Google Scholar 

  27. Xiao, Z.G., Menon, C.: Towards the development of a portable wrist exoskeleton. In: IEEE international conference on robotics and biomimetics, (2011)

    Google Scholar 

  28. Andrikopoulos, G., Nikolakopoulos, G., Manesis, S.: Motion control of a novel robotic wrist exoskeleton via pneumatic muscle actuators. In: 20th IEEE international conference on emerging technologies and factory automation (ETFA), (2015)

    Google Scholar 

  29. Al-Fahaam, H., Davis, S., Nefti-Meziani, S.: Wrist rehabilitation exoskeleton robot based on pneumatic soft actuators. In: Proceeding of international conference for stu dents on applied engineering (ICSAE), (2017)

    Google Scholar 

  30. Higuma, T., Kiguchi, K., Arata, J.: Low-profile two-degree-of-freedom wrist exoskel eton device using multiple spring blades. IEEE Robot. Autom. Lett., (2017)

    Google Scholar 

  31. Lee, J., Song, B.W., Yang, W.: Design of exoskeleton-type wrist human–machine inter- face based on over-actuated coaxial spherical parallel mechanism. Adv. Mech. Eng

    Google Scholar 

  32. Del Cerro, D.S., Copaci, D., E Moreno, L., Blanco, D.: SMA based wrist exoskeleton for rehabilitation therapy*. IROS, (2018)

    Google Scholar 

  33. Dragusanu, M., Lisini, T., Iqbal, M.Z., Prattichizzo, D., Melvezzi, M.: Design, development, and control of a tendon-actuated exoskeleton for wrist rehabilitation and Training. In: IEEE international conference on robotics and automation (ICRA), (2020)

    Google Scholar 

  34. Gupta, A., O’Malley, M.K., Patoglu, V., Burgar, C.: Design, control and performance of rice wrist: A force feedback wrist exoskeleton for rehabilitation and training. Int. J. Robot. Res., (2008)

    Google Scholar 

  35. Ren, Y., Kang, S.H., Park, H.S., Wu, Y.N., Zhang, L.Q.: Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in Neuro rehabilitation. In: IEEE transactions of neural systems and rehabilitation engineer ing, (2013)

    Google Scholar 

  36. Troncossi, M., Mozaffari Foumashi, M., Mazzotti, C., Zannoli, D., Castelli, V.P.: Design and manufacturing of a hand-and-wrist exoskeleton prototype for the rehabilitation of post-stroke patients. In: Quaderni del DIEM—GMA. Atti della Sesta Giornata di Studio Ettore Funaioli, (2012)

    Google Scholar 

  37. Rahman, M.H., Rahman, M.J., Cristobal,O.L., Saad, M., Kenne, J.P, Archambault, P.S.: Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements. Robotica, (2014)

    Google Scholar 

  38. Bartlett, N.W., Lyau, V., Raiford, W.A., Holland, D., Gafford, J.B., Ellis, T.D., Walsh, C.J.: A soft robotic orthosis for wrist rehabilitation. In: J. Med. Devices, ( 2015)

    Google Scholar 

  39. Buongiorno, D., Sotgiu, E., Leonardis, D., Marchschi, S., Solassi, M., Frisoli, A.: WRES: A novel 3 DoF wrist exoskeleton with tendon-driven differential transmission for neuro-rehabilitation and teleoperation. In: IEEE robotics and automation letters, (2018)

    Google Scholar 

  40. Yang, S., Li, M., Wang, J., Wang, T., Liang, Z., He, B., Xie, J., Xu, G.: A novel wrist reha- bilitation exoskeleton using 3D-printed multi-segment mechanism. In: 43rd Annual international conference of the IEEE engineering in medicine & biology society (EMBC), (2021)

    Google Scholar 

  41. Shi, K., Song, A., Li, Y., Li H., Chen, D., Zhu, L.: A cable-driven three-DOF wrist rehabilitation exoskeleton with improved performance. Front. Neuro Robot., (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. C. Lovasz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Crăciun, N.G., Lovasz, E.C., Mateaș, M.C., Moldovan, C.E. (2023). A State of Art Overwiew on Wrist Rehabilitation Exoskeletons. In: Doroftei, I., Nitulescu, M., Pisla, D., Lovasz, EC. (eds) Proceedings of SYROM 2022 & ROBOTICS 2022. IISSMM 2022. Mechanisms and Machine Science, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-031-25655-4_22

Download citation

Publish with us

Policies and ethics