Skip to main content

Ice-Covered Lakes Environment

  • Chapter
  • First Online:
Freezing of Lakes and the Evolution of Their Ice Cover

Part of the book series: Springer Praxis Books ((PRAXIS))

  • 161 Accesses

Abstract

Ice cover on a lake introduces challenges for nature and human life. Under an ice cover, it is dark and quiet, photosynthesis is limited by the light conditions, and respiration is limited by the decreasing dissolved oxygen storage. Aquatic life must minimize energy consumption to survive over the winter. In many eutrophic lakes artificial aeration or vertical circulation driving systems are used for the dissolved oxygen renewal in the ice season. Climate impact of lakes is provided by methane release from shallow eutrophic lakes in the melting period. Primary production is observed in the near-surface layer under ice in large amounts in spring but also in mid-winter if sunlight can penetrate the ice cover. There are habitats of life also inside ice, in the slush layer and in pores in melting ice. Shoreline erosion and bottom scouring by moving ice have influence on the near-shore ecosystems. People have lived at ice-covered lakes already in the Stone Age, and ice tools have been found 9000 years old. Due to the impact of lake ice on local communities, lake ice conditions have been monitored within environmental service systems based on satellite remote sensing and local observers, including citizen science. These long-term data are also valuable for scientific research. The present utilization of ice covers mostly on-ice traffic, fishing, skiing and skating, ice-water bathing, and many kind of events. For the local population the length of ice season is critical from the view point of boating, while the length of safe ice season, from ice thickness reaching 10–20 cm to the beginning of the melting period, is critical for on-ice activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arrigo, K. R. (2003). Primary production in sea ice. In D. N. Thomas, & G. S. Dieckmann (Eds.), Sea ice. An introduction to its physics, chemistry and biology (pp. 153–183). Blackwell Publishing.

    Google Scholar 

  • Bai, Q., Li, R., Li, Z., Leppäranta, M., Arvola, L., & Li, M. (2016). Time series analyses of water temperature and dissolved oxygen concentration in Lake Valkea-kotinen (Finland) during ice season. Ecological Informatics, 36, 181–189.

    Google Scholar 

  • Barica, J., & Mathias, J. A. (1979). Oxygen depletion and winterkill risk in small prairie lakes under extended ice cover. Journal of the Fishery Research Board of Canada, 36, 980–986.

    Article  Google Scholar 

  • Bengtsson, L., & Ali-Maher, O. (2020). The dependence of the consumption of dissolved oxygen on lake morphology in ice covered lakes. Hydrology Research, 51(3), 381–391.

    Article  Google Scholar 

  • Beutel, M. W. (2001). Oxygen consumption and ammonia accumulation in the hypolimnion of Walker Lake, Nevada. Hydrobiologia, 466, 107–117.

    Article  Google Scholar 

  • Bižic-Ionescu, M., Amann, R., & Grossart, H. P. (2014). Massive regime shifts and high activity of heterotrophic bacteria in an ice-covered lake. PLoS ONE, 9(11), e113611.

    Article  Google Scholar 

  • Bolsenga, S. J. (1988). Nearshore Great Lakes ice cover. Cold Regions Science and Technology, 15, 99–105.

    Article  Google Scholar 

  • Boudreau, B. P., & Jørgensen, B. B. (2001). The benthic boundary layer: Transport processes and biogeochemistry. Oxford University Press.

    Google Scholar 

  • Boylen, C. W., & Brock, T. D. (1973). Bacterial decomposition processes in Lake Wingra sediments during winter. Limnology and Oceanography, 18, 628–634.

    Article  Google Scholar 

  • Bregman, G. R., & Proskuryakov, B. V. (1943). Ice crossing-Sverdlovsk [in Russian]. Gidrometeoizdat, 151 p.

    Google Scholar 

  • von Cholnoky, E. (1909). Das Eis des Balatonsees. E. Höezel.

    Google Scholar 

  • Ellis, C. R., & Stefan, H. G. (1989). Oxygen demand in ice covered lakes as it pertains to winter aeration. Water Resources Bulletin, 25, 1169–1176.

    Google Scholar 

  • Felip, M., Sattler, B., Psenner, R., & Catalan, J. (1995). Highly active microbial communities in the ice and snow cover of high mountain lakes. Applied Environmental Microbiology, 61, 2394–2401.

    Article  Google Scholar 

  • Filatov, N. N., & Kondratyev, K. Ya. (1999). Limnology and remote sensing (p. 406). Springer-Praxis Series in Remote Sensing, Springer.

    Google Scholar 

  • Fritsen, C. H., & Priscu, J. C. (1998). Cyanobacterial assemblages in permanent ice covers on antarctic lakes: Distribution, growth rate, and temperature response of photosynthesis. Journal of Phycology, 34, 587–597.

    Article  Google Scholar 

  • Golosov, S., & Ignatieva, N. (1999). Hydrothermodynamic features of mass exchange across the sediment–water interface in shallow lakes. Hydrobiologia, 408(409), 153–157.

    Article  Google Scholar 

  • Golosov, S., Maher, O. A., Schipunova, E., Terzhevik, A., Zdorovennova, G., & Kirillin, G. (2007). Physical background of the development of oxygen depletion in ice-covered lakes. Oecologia (online). https://doi.org/10.1007/s00442-006-0543-8

  • Greenbank, J. (1945). Limnological conditions in ice-covered lakes, especially as related to winter-kill of fish. Ecological Monographs, 15, 343–391.

    Article  Google Scholar 

  • Håkanson, L., & Bryhn, A. C. (2008). A dynamic mass-balance model for phosphorus in lakes with a focus on criteria for applicability and boundary conditions. Water, Air, and Soil Pollution, 187, 119–147.

    Article  Google Scholar 

  • Halsey, T. G. (1968). Autumnal and over-winter limnology of three small eutrophic lakes with particular reference to experimental circulation and trout mortality. Journal of the Fishery Research Board of Canada, 25, 81–99.

    Article  Google Scholar 

  • Hamilton, D. P., & Mitchell, S. F. (1996). An empirical model for sediment resuspension in shallow lakes. Hydrobiologia, 317, 209–220.

    Article  Google Scholar 

  • Hargrave, B. T. (1972). A comparison of sediment oxygen uptake, hypolimnetic oxygen deficit and primary production in Lake Esrom, Denmark. Verhandlungen Des Internationalen Verein Limnologie, 18, 134–139.

    Google Scholar 

  • Hargrave, B. T. (1969). Similarity of oxygen uptake by benthic communities. Limnology and Oceanography, 14, 801–805.

    Google Scholar 

  • Hawes, I. (1983). Turbulence and its consequences for phytoplankton development in two ice covered Antarctic lakes. British Antarctic Survey Bulletin, 60, 69–81.

    Google Scholar 

  • Helaakoski, A. (1912) Havaintoja jäätymisilmiöiden geomorfologisista vaikutuksista [Beobachtungen über die geomorfologischen Einflüsse der Gefriererscheinungen]. Suomalaisen Maantieteellisen Yhdistyksen julkaisuja, 9, 109 pp.

    Google Scholar 

  • Higashino, M., Gantzer, C. J., & Stefan, H. G. (2004). Unsteady diffusional mass transfer at the sediment/water interface: Theory and significance for SOD measurement. Water Resources, 38, 1–12.

    Google Scholar 

  • Ivanov, K. E. (1949). Carrying capacity of the ice cover and the construction of roads on the ice. Publishing House of the Northern Sea Route, Moscow, 182 p.

    Google Scholar 

  • Kelley, D. E. (1997). Convection in ice-covered lakes: Effects on algal suspension. Journal of Plankton Research, 19(12), 1859–1880. https://doi.org/10.1093/plankt/19.12.1859

    Article  Google Scholar 

  • Kirillin, G., Engelhardt, C., Golosov, S., & Hintze, T. (2009). Basin-scale internal waves in the bottom boundary layer of ice-covered Lake Müggelsee, Germany. Aquatic Ecology, 43, 641–651. https://doi.org/10.1007/s10452-009-9274-3

    Article  Google Scholar 

  • Kirillin, G., Leppäranta, M., Terzhevik, A., Granin, N., Bernhardt, J., Engelhardt, C., Efremova, T., Golosov, S., Palshin, N., Sherstyankin, P., Zdorovennova, G., & Zdorovennov, R. (2012). Physics of seasonally ice-covered lakes: A review. Aquatic Sciences, 74, 659–682. https://doi.org/10.1007/s00027-012-0279-y

    Article  Google Scholar 

  • Kristensen, P., Søndergaard, M., & Jeppesen, E. (1992). Resuspension in a shallow eutrophic lake. Hydrobiologia, 228, 101–109.

    Article  Google Scholar 

  • Laybourn-Parry, J., Tranter, M., & Hodson, A. J. (2012). The ecology of snow and ice environments (p. 192). Oxford University Press.

    Book  Google Scholar 

  • Leppäranta, M., & Lewis, J. E. (2007). Observations of ice surface temperature in the Baltic Sea. International Journal of Remote Sensing, 28(17), 3963–3977.

    Article  Google Scholar 

  • Leppäranta, M., Tikkanen, M., & Virkanen, J. (2003). Observations of ice impurities in some Finnish lakes. Proceedings of the. Estonian Academy of Science. Chemistry, 52(2), 59–75.

    Article  Google Scholar 

  • Leppäranta, M., Heini, A., Jaatinen, E., & Arvola, L. (2012). The influence of ice season on the physical and ecological conditions in Lake Vanajanselkä, southern Finland. Water Quality Research Journal of Canada, 47(3–4), 287–299.

    Article  Google Scholar 

  • Leppäranta, M., Lewis, J. E., Heini, A., & Arvola, L. (2018). Spatial statistics of hydrography and water chemistry in a eutrophic boreal lake based on sounding and water samples. Environmental Monitoring and Assessment, 190, 378.

    Google Scholar 

  • Leppäranta, M., Luttinen, A., & Arvola, L. (2020). Physics and geochemistry of lakes in Vestfjella, Dronning Maud Land. Antarctic Science, 32(1), 29–42.

    Article  Google Scholar 

  • Leppäranta, M. (2010). Modelling of growth and decay of lake ice. In G. George (Ed.), Climate change impact on European lakes (pp. 63–83). Springer.

    Google Scholar 

  • Lu, P., Cao, X., Li, G., Huang, W., Leppäranta, M., Arvola, L., Huotari, J., & Li, Z. (2020). Mass and heat balance of a lake ice cover in the Central Asian arid climate zone. Water, 12, 2888.

    Google Scholar 

  • Marra, J. (1978). Effect of short-term variation in light intensity on photosynthesis of a marine phytoplankter: A laboratory simulation study. Marine Biology, 46, 191–202.

    Article  Google Scholar 

  • Matthews, P. C., & Heaney, S. I. (1987). Solar heating and its influence on mixing in ice-covered lakes. Freshwater Biology, 18, 135–149.

    Article  Google Scholar 

  • Matzinger, A., Müller, B., Niederhauser, P., Schmid, M., & Wüest, A. (2010). Hypolimnetic oxygen consumption by sediment-based reduced substances in former eutrophic lakes. Limnology and Oceanography, 55(5), 2073–2084.

    Article  Google Scholar 

  • Nghiem, S. V., & Leshkevich, G. A. (2007). Satellite SAR remote sensing of Great Lakes ice cover, Part 1. Ice backscatter signatures at C band. Journal of Great Lakes Research, 33, 722–735.

    Article  Google Scholar 

  • Niemistö, J., & Horppila, J. (2007). The contribution of ice cover to sediment resuspension in a shallow temperate lake—Possible effects of climate change on internal nutrient loading. Journal of Environmental Quality, 36, 1318–1323.

    Article  Google Scholar 

  • Palosuo, E. (1982). Jään vahvistaminen Finlandia-82 hiihdon lähtöpaikalla [Strengthening of the ice at start of the Finlandia-82 ski event]. Report Series in Geophysics 16. Department of Physics, University of Helsinki.

    Google Scholar 

  • Parsekian, A. D., Jones, B. M., Jones, M., Grosse, G., Walter Anthony, K. M., & Slater, L. (2011). Expansion rate and geometry of floating vegetation mats on the margins of thermokarst lakes, northern Seward Peninsula, Alaska, USA. Earth Surface Processes and Landforms, 36(14), 1889–1897.

    Article  Google Scholar 

  • Phelps, A. R., Peterson, K. M., & Jeffries, M. O. (1998). Methane efflux from high-latitude lakes during spring ice melt. Journal of Geophysical Research: Atmospheres, 103(D22), 29029–29036.

    Article  Google Scholar 

  • Priscu, J. C. (Ed.) (1998). Ecosystem dynamics in a polar desert: The McMurdo Dry Valleys Antarctica. Research Series vol. 72. American Geophysical Union.

    Google Scholar 

  • Prokopenko, A. A., & Williams, D. F. (2005). Depleted methane-derived carbon in waters of Lake Baikal, Siberia. Hydrobiologio, 544, 279–288.

    Article  Google Scholar 

  • Puklakov, V. V., Edel’shtein, K. K., Kremenetskaya, E. R., & Gashkina, N. A. (2002). Water self purification in the Mozhaisk Reservoir in winter. Water Resources, 29(6), 655–664.

    Google Scholar 

  • Rintala, J. M. (2009). A systematic-ecological approach to Baltic Sea ice studies of algae and protists [PhD thesis, University of Helsinki, Faculty of Biosciences].

    Google Scholar 

  • Rudd, J. W., & Hamilton, R. D. (1978). Methane cycling in a eutrophic shield lake and its effects on the whole lake metabolism. Limnology and Oceanography, 23, 337–348.

    Article  Google Scholar 

  • Salonen, K., Leppäranta, M., Viljanen, M., & Gulati, R. (2009). Perspectives in winter limnology: Closing the annual cycle of freezing lakes. Aquatic Ecology, 43(3), 609–616.

    Article  Google Scholar 

  • Schmid, M., De Batist, M., Granin, N. G., Kapitanov, V. A., McGinnis, D. F., Mizandrontsev, I. B., Obzhirov, A. I., & Wüest, A. (2007) Sources and sinks of methane in Lake Baikal: A synthesis of measurements and modeling. Limnology and Oceanography, 52(5), 1824–1837.

    Google Scholar 

  • Semovski, S. V., Mogilev, NYu., & Sherstyankin, P. P. (2000). Lake Baikal ice: Analysis of AVHRR imagery and simulation of under-ice phytoplankton bloom. Journal of Marine Systems, 27, 117–130.

    Article  Google Scholar 

  • Shuter, B. J., Finstad, A. G., Helland, I. P., Zweimüller, I., & Hölker, F. (2012). The role of winter phenology in shaping the ecology of freshwater fish and their sensitivities to climate change. Aquatic Sciences, 74(4), 637–657.

    Google Scholar 

  • Sobiech, J., & Dierking, W. (2013). Observing lake- and river-ice decay with SAR: Advantages and limitations of the unsupervised k-means classification approach. Annals of Glaciology, 54(62), 65–72.

    Article  Google Scholar 

  • Song, S., Li, C., Shi, X., Zhao, S., Li, Z., Bai, Y., Cao, X., Wang, Q., Huotari, J., Tulonen, T., Uusheimo, S., Leppäranta, M., & Arvola, L. (2019). Under-ice metabolism in a shallow lake (Wuliangsuhai) in Inner Mongolia, in cold and arid climate zone. Freshwater Biology, 00, 1–11.

    Google Scholar 

  • Strayer, R. F., & Tiedje, J. M. (1978). In situ methane production in a small, hypereutrophic, hard-water lake: Loss of methane from sediments by vertical diffusion and ebullition. Limnology and Oceanography, 23(6), 1201–1206.

    Article  Google Scholar 

  • Terzhevik, A., Golosov, S., Palshin, N., Mitrokhov, A., Zdorovennov, R., Zdorovennova, G., Kirillin, G., Shipunova, E., & Zverev, I. (2009). Some features of the thermal and dissolved oxygen structure in boreal, shallow ice-covered Lake Vendyurskoe, Russia. Aquatic Ecology, 43(3), 617–627. https://doi.org/10.1007/s10452-009-9288-x

    Article  Google Scholar 

  • Terzhevik, A. Y., Palshin, N. I., Golosov, S. D., Zdorovennov, R. E., Zdorovennova, G. E., Mitrokhov, A. V., Potakhin, M. S., Shipunova, E. A., & Zverev, I. S. (2010). Hydrophysical aspects of oxygen regime formation in a shallow ice-covered lake. Water Resources, 37, 662–673. https://doi.org/10.1134/S0097807810050064

    Article  Google Scholar 

  • Thomas, D. N., & Dieckmann, G. S. (Eds.). (2010). Sea ice. An introduction to its physics, chemistry and biology (pp. 153–183). Blackwell Publishing.

    Google Scholar 

  • Vakkilainen, P. (2001). Hydrology at technical universities. Geophysica, 37(1–2), 205–213.

    Google Scholar 

  • Van Hoeve, P., Belzile, C., Gibson, J. A. E., & Vincent, W. F. (2006). Coupled landscape-lake evolution in the Canadian High Arctic. Canadian Journal of Earth Sciences, 43, 533–546.

    Article  Google Scholar 

  • Vincent, W. F., Hobbie, J. E., & Laybourn-Parry, J. (2008). Introduction to the limnology of high-latitude lake and river ecosystems. In W. F. Vincent, & J. Laybourn-Parry (Eds.), Polar lakes and rivers. Limnology of Arctic and Antarctic aquatic ecosystems (pp. 1–23). Oxford University Press.

    Google Scholar 

  • Weeks, W. F. (1998). Growth conditions and structure and properties of sea ice. In M. Leppäranta (Ed.), The physics of ice-covered seas (Vol. 1, pp. 25–104). Helsinki University Press. Available at https://helda.helsinki.fi/handle/10138/39285

  • Welch, H., Dillon, P., & Sreedharan, A. (1976). Factors affecting winter respiration in Ontario lakes. Journal of Fishery Research Board of Canada, 33, 1809–1815.

    Article  Google Scholar 

  • Wilson, A. T., & Wellman, H. W. (1962). Lake Vanda: An Antarctic lake. Nature, 196, 1171–1173.

    Article  Google Scholar 

  • Yang, F., Li, C., Leppäranta, M., Shi, X., Zhao, S., & Zhang, C. (2016). Notable increases in nutrient concentrations in a shallow lake during seasonal ice growth. Water Science and Technology, 74(12), 2773–2883.

    Google Scholar 

  • Zeikus, J. G., & Winfrey, M. R. (1976). Temperature limitation of methanogenesis in aquatic sediments. Applied Environmental Microbiology, 31, 99–107.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matti Leppäranta .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leppäranta, M. (2023). Ice-Covered Lakes Environment. In: Freezing of Lakes and the Evolution of Their Ice Cover. Springer Praxis Books. Springer, Cham. https://doi.org/10.1007/978-3-031-25605-9_8

Download citation

Publish with us

Policies and ethics