Skip to main content

Dynamic Network Loading: Non-physical Queue Models

  • Chapter
  • First Online:
Dynamic Network User Equilibrium

Part of the book series: Complex Networks and Dynamic Systems ((CNDS,volume 5))

  • 152 Accesses

Abstract

An essential component of many DTA models is a procedure known as dynamic network loading (DNL). The DNL subproblem aims at describing and predicting the spatial-temporal evolution of traffic flows on a network that is consistent with established route and departure time choices of travelers, by introducing appropriate dynamics to flow propagation, flow conservation, and travel delays on a network level. Any DNL must be consistent with the established path flows and link delay model, and DNL is usually performed under the first-in-first-out (FIFO) rule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For this reason, many scholars refer to the Vickrey model as the point queue model (PQM). However, as we commented in the beginning of this chapter, the name PQM was first suggested by Daganzo (1994) to describe the link delay model (LDM) proposed in Friesz et al. (1993).

References and Suggested Reading

  • Armbruster, D., De Beer, C., Freitag, M., Jagalski, T., & Ringhofer, C. (2006). Autonomous control of production networks using a pheromone approach. Physica A, 363(1), 104–114.

    Article  Google Scholar 

  • Aubin, J. P., Bayen, A. M., & Saint-Pierre, P. (2008). Dirichlet problems for some Hamilton-Jacobi equations with inequality constraints. SIAM Journal on Control and Optimization, 47(5), 2348–2380.

    Article  Google Scholar 

  • Astarita, V. (1996). A continuous time link model for dynamic network loading based on travel time function. In 13th International Symposium on Theory of Traffic Flow (pp. 79–103).

    Google Scholar 

  • Ban, X., Pang, J. S., Liu, H. X., & Ma, R. (2011). Continuous-time point-queue models in dynamic network loading. Transportation Research Part B, 46(3), 360–380.

    Article  Google Scholar 

  • Barron, E. N., & Jenssen, R. (1990). Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians. Communications in Partial Differential Equations, 15, 1713–1742.

    Article  Google Scholar 

  • Bernstein, D., Friesz, T. L., Tobin, R. L., & Wie, B. W. (1993). A variational control formulation of the simultaneous route and departure-time equilibrium problem. In Proceedings of the International Symposium on Transportation and Traffic Theory (pp. 107–126).

    Google Scholar 

  • Bressan, A., & Han, K. (2011). Optima and equilibria for a model of traffic flow. SIAM Journal on Mathematical Analysis, 43(5), 2384–2417.

    Article  Google Scholar 

  • Carey, M. (1986). A constraint qualification for a dynamic traffic assignment problem. Transportation Science, 20(1), 55–58.

    Article  Google Scholar 

  • Carey, M. (1987). Optimal time-varying flows on congested networks. Operations Research, 35(1), 58–69.

    Article  Google Scholar 

  • Carey, M. (1992). Nonconvexity of the dynamic traffic assignment problem. Transportation Research, 26B(2), 127–132.

    Article  Google Scholar 

  • Carey, M. (1995). Dynamic congestion pricing and the price of fifo. In N. H. Gartner and G. Improta (Eds.), Urban traffic networks (pp. 335–350). New York, NY: Springer.

    Google Scholar 

  • Carey, M., & McCartney, M. (2002). Behavior of a whole-link travel time model used in dynamic traffic assignment. Transportation Research Part B,, 36, 85–93.

    Article  Google Scholar 

  • Claudel, C. G., & Bayen, A. M. (2010a). Lax-Hopf based incorporation of internal boundary conditions into Hamilton-Jacobi equation. Part I: Theory. IEEE Transactions on Automatic Control, 55(5), 1142–1157.

    Article  Google Scholar 

  • Claudel, C. G., & Bayen, A. M. (2010b). Lax-Hopf based incorporation of internal boundary conditions into Hamilton-Jacobi equation. Part II: Computational methods. IEEE Transactions on Automatic Control, 55(5), 1158–1174.

    Article  Google Scholar 

  • Coclite, G. M., Garavello, M., & Piccoli, B. (2005). Traffic flow on a road network. SIAM Journal on Mathematical Analysis, 36(6), 1862–1886.

    Article  Google Scholar 

  • Daganzo, C. F. (1994). The cell transmission model. Part I: A simple dynamic representation of highway traffic. Transportation Research Part B, 28(4), 269–287.

    Article  Google Scholar 

  • Daganzo, C. F. (1995). The cell transmission model. Part II: Network traffic. Transportation Research Part B, 29(2), 79–93.

    Article  Google Scholar 

  • D’apice, C., Manzo, R., & Piccoli, B. (2006). Packet flow on telecommunication networks. SIAM Journal on Mathematical Analysis, 38(3), 717–740.

    Article  Google Scholar 

  • D’apice, C., & Piccoli, B. (2008). Vertex flow models for vehicular traffic on networks. Mathematical Models and Methods in Applied Sciences, 18, 1299–1315.

    Google Scholar 

  • Drissi-Kaẗouni, O., & Hameda-Benchekroun, A. (1992). A dynamic traffic assignment model and a solution algorithm. Transportation Science, 26(2), 119–128.

    Google Scholar 

  • Evans, L. C. (1995). Partial differential equations (2nd ed.). Providence, RI: American Mathematical Society.

    Google Scholar 

  • Filippov, A. F. (1988). Differential equations with discontinuous right-hand sides. Kluwer Academic Publishers.

    Book  Google Scholar 

  • Frankowska, H. (1993). Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations. SIAM Journal on Control and Optimization, 31(1), 257–272.

    Article  Google Scholar 

  • Friesz, T. L., Bernstein, D., Smith, T., Tobin, R., & Wie, B. (1993). A variational inequality formulation of the dynamic network user equilibrium problem. Operations Research, 41(1), 80–91.

    Article  Google Scholar 

  • Friesz, T. L., Bernstein, D., Suo, Z., & Tobin, R. L. (2001). Dynamic network user equilibrium with state-dependent time lags. Networks and Spatial Economics, 1, 319–347.

    Article  Google Scholar 

  • Friesz, T. L., Kim, T., Kwon, C., & Rigdon, M. A. (2011). Approximate network loading and dual-time-scale dynamic user equilibrium. Transportation Research Part B, 45(1), 176–207.

    Article  Google Scholar 

  • Friesz, T., Luque, J., Tobin, R., & Wie, B. (1989). Dynamic network traffic assignment considered as a continuous-time optimal control problem. Operations Research, 37(6), 893–901.

    Article  Google Scholar 

  • Fügenschuh, A., Göttlich, S., Herty, M., Klar, A., & Martin, A. (2008). A discrete optimization approach to large scale supply networks based on partial differential equations. SIAM Journal on Scientific Computing, 30(3), 1490–1507.

    Article  Google Scholar 

  • Garavello, M., & Piccoli, B. (2006). Traffic flow on networks. Conservation laws models. AIMS Series on Applied Mathematics. Springfield, MO.

    Google Scholar 

  • Garavello, M., & Piccoli, B. (2009). Conservation laws on complex networks. Annales de l’Institut Henri Poincaré C Analyse non linéaire, 26(5), 1925–1951.

    Article  Google Scholar 

  • Godunov, S. K. (1959). A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math Sbornik, 47(3), 271–306.

    Google Scholar 

  • Greenshields, B. D. (1935). A study of traffic capacity. In Proceedings of the 13th Annual Meeting of the Highway Research Board (Vol. 14, pp. 448–477).

    Google Scholar 

  • Han, K., Friesz, T. L., & Yao, T. (2012). A variational approach for continuous supply chain networks. arXiv:1211.4611.

    Google Scholar 

  • Han, K., Friesz, T. L., & Yao, T. (2013a). A partial differential equation formulation of Vickrey’s bottleneck model, part I: Methodology and theoretical analysis. Transportation Research Part B, 49, 55–74.

    Article  Google Scholar 

  • Han, K., Friesz, T. L., & Yao, T. (2013b). A partial differential equation formulation of Vickrey’s bottleneck model, part II: Numerical analysis and computation. Transportation Research Part B, 49, 75–93.

    Article  Google Scholar 

  • Herty, M., & Klar, A. (2003). Modeling, simulation, and optimization of traffic flow networks. SIAM Journal on Scientific Computing, 25, 1066–1087.

    Article  Google Scholar 

  • Herty, M., Moutari, S., & Rascle, M. (2006). Optimization criteria for modelling intersections of vehicular traffic flow. Networks and Heterogenous Media, 1(2), 193–210.

    Google Scholar 

  • Heydecker, B. G., & Addison, J. D. (1996). An exact expression of dynamic traffic equilibrium. In J.B. Lesort (Ed.), Transportation and Traffic Theory (pp. 359–383). Oxford, UK: Pergamon Press.

    Google Scholar 

  • Holden, H., & Risebro, N. H. (1995). A mathematical model of traffic flow on a network of unidirectional roads. SIAM Journal on Mathematical Analysis, 26(4), 999–1017.

    Article  Google Scholar 

  • Jin, W. (2010). Continuous kinematic wave models of merging traffic flow. Transportation Research Part B, 44, 1084–1103.

    Article  Google Scholar 

  • Jin, W., & Zhang, H. M. (2003). On the distribution schemes for determining flows through a merge. Transportation Research Part B, 37(6), 521–540.

    Article  Google Scholar 

  • Kuwahara, M., & Akamatsu, T. (1996). Decomposition of the reactive dynamic assignments with queues for a many-to-many origin-destination pattern. Transportation Research Part B, 31(1), 1–10.

    Article  Google Scholar 

  • Larsson, S., & Thomée, V. (2005). Partial differential equations with numerical methods. Berlin: Springer and Heidelberg:GmbH.

    Google Scholar 

  • Lebacque, J. (1996). The Godunov scheme and what it means for first order traffic flow models. In Proceedings of the 13th International Symposium on Transportation and Traffic Theory (pp. 647–678).

    Google Scholar 

  • Lebacque, J., & Khoshyaran, M. (1999). Modeling vehicular traffic flow on networks using macroscopic models. In Finite volumes for complex applications II (pp. 551–558). Paris: Hermes Science Publishing.

    Google Scholar 

  • Lebacque, J., & Khoshyaran, M. (2002). First order macroscopic traffic flow models for networks in the context of dynamic assignment. In M. Patriksson & K. A. P. M. Labbe (Eds.), Transportation planning state of the art. , Norwell, MA: Kluwer Academic Publishers.

    Google Scholar 

  • LeVeque, R. J. (1992). Numerical methods for conservation laws. Birkhäuser.

    Google Scholar 

  • Li, J., Fujiwara, O., & Kawakami, S. (2000). A reactive dynamic user equilibrium model in network with queues. Transportation Research Part B, 34(8), 605–624.

    Article  Google Scholar 

  • Lighthill, M., & Whitham, G. (1955). On kinematic waves. II. A theory of traffic flow on long crowded roads. Proceedings of the Royal Society of London: Series A, 229, 317–345.

    Google Scholar 

  • Marigo, A., & Piccoli, B. (2008). A fluid dynamic model for T-junctions. SIAM Journal on Mathematical Analysis, 39(6), 2016–2032.

    Article  Google Scholar 

  • Merchant, D., & Nemhauser, G. (1978a). A model and an algorithm for the dynamic traffic assignment problems. Transportation Science, 12(3), 183–199.

    Article  Google Scholar 

  • Merchant, D., & Nemhauser, G. (1978b). Optimality conditions for a dynamic traffic assignment model. Transportation Science, 12(3), 200–207.

    Article  Google Scholar 

  • Moskowitz, K. (1965). Discussion of ‘freeway level of service as influenced by volume and capacity characteristics’ by D.R. Drew and C.J. Keese. Highway Research Record, 99, 43–44.

    Google Scholar 

  • Newell, G. F. (1993a). A simplified theory of kinematic waves in highway traffic. Part I: General theory. Transportation Research Part B, 27(4), 281–287.

    Article  Google Scholar 

  • Newell, G. F. (1993b). A simplified theory of kinematic waves in highway traffic. Part II: Queuing at freeway bottlenecks. Transportation Research Part B, 27(4), 289–303.

    Article  Google Scholar 

  • Newell, G. F. (1993c). A simplified theory of kinematic waves in highway traffic. Part III: Multi-destination flows. Transportation Research Part B, 27(4), 305–313.

    Article  Google Scholar 

  • Ni, D., & Leonard, J. (2005). A simplified kinematic wave model at a merge bottleneck. Applied Mathematical Modeling, 29(11), 1054–1072.

    Article  Google Scholar 

  • Nie, X., & Zhang, H. M. (2005). A comparative study of some macroscopic link models used in dynamic traffic assignment. Networks and Spatial Economics, 5(1), 89–115.

    Article  Google Scholar 

  • Pang, J. S., Han, L. S., Ramadurai, G., & Ukkusuri, S. (2011). A continuous-time linear complementarity system for dynamic user equilibria in single bottleneck traffic flows. Mathematical Programming, Series A, 133(1–2), 437–460.

    Google Scholar 

  • Ran, B., & Boyce, D. (1996). Modeling dynamic transportation networks: An intelligent transportation system oriented approach (2nd Ed.). Springer.

    Book  Google Scholar 

  • Ran, B., Boyce, D., & LeBlanc, L. (1996). A new class of instantaneous dynamic user optimal traffic assignment models. Operations Research, 41(1), 192–202.

    Article  Google Scholar 

  • Richards, P. I. (1956). Shockwaves on the highway. Operations Research, 4, 42–51.

    Article  Google Scholar 

  • Royden, H. L., & Fitzpatrick, P. (1988). Real analysis (Vol. 3). Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Smoller, J. (1983). Shock waves and reaction-diffusion equations. New York: Springer.

    Book  Google Scholar 

  • Stewart, D. E. (1990). A high accuracy method for solving ODEs with discontinuous right-hand side. Numerische Mathematik, 58, 299–328.

    Article  Google Scholar 

  • Vickrey, W. S. (1969). Congestion theory and transport investment. The American Economic Review, 59(2), 251–261.

    Google Scholar 

  • Walter, W. (1988). Ordinary differential equations. Springer.

    Google Scholar 

  • Wie, B., Tobin, R., Friesz, T., & Bernstein, D. (1995). A discrete-time, nested cost operator approach to the dynamic network user equilibrium problem. Transportation Science, 29(1), 79–92.

    Article  Google Scholar 

  • Wu, J. H., Chen, Y., & Florian, M. (1998). The continuous dynamic network loading problem: A mathematical formulation and solution method. Transportation Research Part B, 32, 173–187.

    Article  Google Scholar 

  • Xu, Y. W., Wu, J. H., Florian, M., Marcotte, P., & Zhu, D. L. (1999). Advances in the continuous dynamic network loading problem. Transportation Science, 33, 341–353.

    Article  Google Scholar 

  • Zhu, D., & Marcotte, P. (2000). On the existence of solutions to the dynamic user equilibrium problem. Transportation Science, 34(4), 402–414.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Friesz, T.L., Han, K. (2022). Dynamic Network Loading: Non-physical Queue Models. In: Dynamic Network User Equilibrium. Complex Networks and Dynamic Systems, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-031-25564-9_7

Download citation

Publish with us

Policies and ethics