Skip to main content

Effort Informed Roadmaps (EIRM*): Efficient Asymptotically Optimal Multiquery Planning by Actively Reusing Validation Effort

  • 76 Accesses

Part of the Springer Proceedings in Advanced Robotics book series (SPAR,volume 27)

Abstract

Multiquery planning algorithms find paths between various different starts and goals in a single search space. They are designed to do so efficiently by reusing information across planning queries. This information may be computed before or during the search and often includes knowledge of valid paths.

Using known valid paths to solve an individual planning query takes less computational effort than finding a completely new solution. This allows multiquery algorithms, such as PRM*, to outperform single-query algorithms, such as RRT*, on many problems but their relative performance depends on how much information is reused. Despite this, few multiquery planners explicitly seek to maximize path reuse and, as a result, many do not consistently outperform single-query alternatives.

This paper presents Effort Informed Roadmaps (EIRM*), an almost-surely asymptotically optimal multiquery planning algorithm that explicitly prioritizes reusing computational effort. EIRM* uses an asymmetric bidirectional search to identify existing paths that may help solve an individual planning query and then uses this information to order its search and reduce computational effort. This allows it to find initial solutions up to an order-of-magnitude faster than state-of-the-art planning algorithms on the tested abstract and robotic multiquery planning problems.

Keywords

  • Sampling-based path planning
  • Optimal path planning
  • Multiquery path planning

M. P. Strub—Work performed while at the University of Oxford.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-25555-7_37
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-25555-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Notes

  1. 1.

    All experiments were run using OMPL 1.5, on a laptop with an Intel i7-4720HQ CPU @ 2.60GHz processor with 16GB RAM.

References

  1. Berenson, D., Abbeel, P., Goldberg, K.: A robot path planning framework that learns from experience. In: ICRA, pp. 3671–3678 (2012). https://ieeexplore.ieee.org/document/6224742

  2. Bohlin, R., Kavraki, L.E.: Path planning using lazy PRM. In: ICRA, pp. 521–528 (2000). https://ieeexplore.ieee.org/abstract/document/844107

  3. Bruce, J., Veloso, M.M.: Real-time randomized path planning for robot navigation. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 288–295. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45135-8_23 https://ieeexplore.ieee.org/document/1041624

    CrossRef  Google Scholar 

  4. Chen, B., Dai, B., Lin, Q., Ye, G., Liu, H., Song, L.: Learning to plan in high dimensions via neural exploration-exploitation trees. In: ICLR (2020). https://openreview.net/forum?id=rJgJDAVKvB

  5. Coleman, D., Şucan, I.A., Moll, M., Okada, K., Correll, N.: Experience-based planning with sparse roadmap spanners. In: ICRA, pp. 900–905 (2015). https://ieeexplore.ieee.org/document/7139284

  6. Dobson, A., Bekris, K.E.: Sparse roadmap spanners for asymptotically near-optimal motion planning. IJRR 33, 18–47 (2014). https://doi.org/10.1177/0278364913498292

  7. Dobson, A., Krontiris, A., Bekris, K.E.: Sparse roadmap spanners. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds.) Algorithmic Foundations of Robotics X. STAR, vol. 86, pp. 279–296. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36279-8_17

    CrossRef  Google Scholar 

  8. Elbanhawi, M., Simic, M.: Sampling-based robot motion planning: a review. IEEE Access (2014). https://ieeexplore.ieee.org/document/6722915

  9. Faust, A., et al.: PRM-RL: long-range robotic navigation tasks by combining reinforcement learning and sampling-based planning. In: ICRA, pp. 5113–5120 (2018). https://arxiv.org/abs/1710.03937

  10. Funk, N., Chalvatzaki, G., Belousov, B., Peters, J.: Learn2Assemble with Structured Representations and Search for Robotic Architectural Construction. In: CoRL (2021). https://openreview.net/forum?id=wBT0lZJAJ0V

  11. Gammell, J.D., Strub, M.P.: Asymptotically optimal sampling-based motion planning methods. Ann. Rev. Control Robot. Autonom. Syst. 4, 295–318 (2021). https://arxiv.org/abs/2009.10484

  12. Gammell, J.D., Barfoot, T.D., Srinivasa, S.S.: Informed sampling for asymptotically optimal path planning. T-RO 34, 966–984 (2018). https://ieeexplore.ieee.org/document/8392759

  13. Gammell, J.D., Barfoot, T.D., Srinivasa, S.S.: Batch Informed Trees (BIT*): informed asymptotically optimal anytime search. IJRR 39, 543–567 (2020). https://doi.org/10.1177/0278364919890396

    CrossRef  Google Scholar 

  14. Hartmann, V.N., Oguz, O.S., Driess, D., Toussaint, M., Menges, A.: Robust task and motion planning for long-horizon architectural construction planning. In: IROS, pp. 6886–6893 (2020). https://ieeexplore.ieee.org/document/9341502

  15. Hartmann, V.N., Orthey, A., Driess, D., Oguz, O.S., Toussaint, M.: Long-horizon multi-robot rearrangement planning for construction assembly. To Appear in T-RO (2021)

    Google Scholar 

  16. Hauser, K.: Lazy collision checking in asymptotically-optimal motion planning. In: ICRA, pp. 2951–2957 (2015) https://ieeexplore.ieee.org/document/7139603

  17. Ichter, B., Harrison, J., Pavone, M.: Learning sampling distributions for robot motion planning. In: ICRA, pp. 7087–7094 (2018). https://ieeexplore.ieee.org/document/8460730

  18. Ichter, B., Schmerling, E., Lee, T.W.E., Faust, A.: Learned critical probabilistic roadmaps for robotic motion planning. In: ICRA, pp. 9535–9541 (2020). https://ieeexplore.ieee.org/document/9197106

  19. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. IJRR 30, 846–894 (2011). https://doi.org/10.1177/0278364911406761

    CrossRef  MATH  Google Scholar 

  20. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. T-RO 12, 566–580 (1996). https://ieeexplore.ieee.org/document/508439

  21. Kiesel, S., Gu, T., Ruml, W.: An effort bias for sampling-based motion planning. In: IROS, pp. 2864–2871 (2017). https://ieeexplore.ieee.org/document/8206118

  22. Lagriffoul, F., Dantam, N.T., Garrett, C., Akbari, A., Srivastava, S., Kavraki, L.E.: Platform-independent benchmarks for task and motion planning. RA-L 3, 3765–3772 (2018). https://ieeexplore.ieee.org/document/8411475

  23. Lavalle, S.M.: Rapidly-exploring random trees: a new tool for path planning. Technical Report (1998)

    Google Scholar 

  24. Li, T.Y., Shie, Y.C .: An incremental learning approach to motion planning with roadmap management. In: ICRA, pp. 3411–3416 (2002). https://ieeexplore.ieee.org/document/1014238

  25. Pan, J., Chitta, S., Manocha, D.: FCL: a general purpose library for collision and proximity queries. In: ICRA, pp. 3859–3866 (2012). https://ieeexplore.ieee.org/document/6225337

  26. Penrose, M.: Random Geometric Graphs. OUP Oxford, Oxford (2003)

    CrossRef  MATH  Google Scholar 

  27. Phillips, M., Cohen, B.J., Chitta, S., Likhachev, M.: E-graphs: bootstrapping planning with experience graphs. In: R:SS, p. 110 (2012). http://www.roboticsproceedings.org/rss08/p43.pdf

  28. Phillips, M., Dornbush, A., Chitta, S., Likhachev, M.: Anytime incremental planning with e-graphs. In: ICRA, pp. 2444–2451 (2013). https://www.cs.cmu.edu/~maxim/files/anytimeincrementalegraphsicra13.pdf

  29. Solovey, K., Kleinbort, M.: The critical radius in sampling-based motion planning. IJRR 39, 266–285 (2020). https://doi.org/10.1177/0278364919859627

    CrossRef  Google Scholar 

  30. Stewart, B.S., White, C.C.: Multiobjective A*. J. ACM 38, 775–814 (1991). https://doi.org/10.1145/115234.115368

    CrossRef  MATH  Google Scholar 

  31. Strub, M.P.: Leveraging multiple sources of information to search continuous spaces. PhD thesis, University of Oxford (2021). https://robotic-esp.com/papers/strubdphil21

  32. Strub, M.P., Gammell, J.D.: AIT* and EIT*: asymmetric bidirectional sampling-based path planning. To appear in IJRR (2022). https://robotic-esp.com/papers/strubijrr22

  33. Şucan, I.A., Moll, M., Kavraki, L.E.: The open motion planning library. RAM, 72–82 (2012). https://ompl.kavrakilab.org

  34. Sánchez, G., Latombe, J.C.: A single-query bi-directional probabilistic roadmap planner with lazy collision checking. In: ISRR (2001). https://doi.org/10.1007/3-540-36460-927

  35. Thayer, J., Benton, J., Helmert, M.: Better parameter-free anytime search by minimizing time between solutions. In: SOcS (2012)

    Google Scholar 

Download references

Acknowledgement

This research has been supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2120/1 - 390831618 and UK Research and Innovation and EPSRC through ACE-OPS: From Autonomy to Cognitive assistance in Emergency OPerationS [EP/S030832/1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin N. Hartmann .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 2244 KB)

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Hartmann, V.N., Strub, M.P., Toussaint, M., Gammell, J.D. (2023). Effort Informed Roadmaps (EIRM*): Efficient Asymptotically Optimal Multiquery Planning by Actively Reusing Validation Effort. In: Billard, A., Asfour, T., Khatib, O. (eds) Robotics Research. ISRR 2022. Springer Proceedings in Advanced Robotics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-031-25555-7_37

Download citation