Skip to main content

What Can Algebraic Topology and Differential Geometry Teach Us About Intrinsic Dynamics and Global Behavior of Robots?

  • 750 Accesses

Part of the Springer Proceedings in Advanced Robotics book series (SPAR,volume 27)

Abstract

Traditionally, robots are regarded as universal motion generation machines. They are designed mainly by kinematics considerations while the desired dynamics is imposed by strong actuators and high-rate control loops. As an alternative, one can first consider the robot’s intrinsic dynamics and optimize it in accordance with the desired tasks. Therefore, one needs to better understand intrinsic, uncontrolled dynamics of robotic systems. In this paper we focus on periodic orbits, as fundamental dynamic properties with many practical applications. Algebraic topology and differential geometry provide some fundamental statements about existence of periodic orbits. As an example, we present periodic orbits of the simplest multi-body system: the double-pendulum in gravity. This simple system already displays a rich variety of periodic orbits. We classify these into three classes: toroidal orbits, disk orbits and nonlinear normal modes. Some of these we found by geometrical insights and some by numerical simulation and sampling.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We cannot introduce manifolds here. Great starting points are the books by T. Needham on differential geometry [31], and by F. Morgan on Riemannian geometry [29].

  2. 2.

    We use Einstein notation in this paper: whenever one up-down pair of indices match, we implicitly sum over them. Example: \(g_{ij}a^i b^j := \sum _i \sum _j g_{ij}a^i b^j\).

References

  1. Albu-Schäffer, A., Della Santina, C.: A review on nonlinear modes in conservative mechanical systems. Annu. Rev. Control. 50, 49–71 (2020)

    CrossRef  MathSciNet  Google Scholar 

  2. Albu-Schäffer, A., Lakatos, D., Stramigioli, S.: Strict nonlinear normal modes of systems characterized by scalar functions on Riemannian manifolds. IEEE Robotics and Automation Letters 6(2), 1910–1917 (2021)

    CrossRef  Google Scholar 

  3. Albu-Schäffer, A., Ott, C., Hirzinger, G.: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int. J. Robot. Res. 26(1), 23–39 (2007)

    CrossRef  MATH  Google Scholar 

  4. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, 2nd edn. Springer, New York (1989)

    CrossRef  Google Scholar 

  5. Ascher, U.M.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1995)

    Google Scholar 

  6. Biess, A., Liebermann, D.G., Flash, T.: A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics. J. Neurosci. 27(48), 13045–13064 (2007)

    CrossRef  Google Scholar 

  7. Bjelonic, F., Sachtler, A., Albu-Schaffer, A., Della Santina, C.: Experimental closed-loop excitation of nonlinear normal modes on an elastic industrial robot. IEEE Robot. Autom. Lett. 7(2), 1689–1696 (2022)

    CrossRef  Google Scholar 

  8. Brooks, R.A.: Elephants don’t play chess. Robot. Auton. Syst. 6, 3–15 (1990). Designing Autonomous Agents

    CrossRef  Google Scholar 

  9. Cartan, H., Eilenberg, S.: Homological Algebra. Princeton University Press, Princeton (1956)

    MATH  Google Scholar 

  10. Casetti, L., Pettini, M., Cohen, E.G.D.: Geometric approach to Hamiltonian dynamics and statistical mechanics. Phys. Rep. 337(3), 237–341 (2000)

    CrossRef  MathSciNet  Google Scholar 

  11. Dankowicz, H., Schilder, F.: Recipes for Continuation. Society for Industrial and Applied Mathematics, Philadelphia (2013)

    CrossRef  MATH  Google Scholar 

  12. Di Cairano, L., Gori, M., Pettini, M.: Coherent Riemanniangeometric description of Hamiltonian order and chaos with Jacobi metric. Chaos Interdisc. J. Nonlinear Sci. 29(12), 123134 (2019)

    CrossRef  MATH  Google Scholar 

  13. Giambó, R., Giannoni, F., Piccione, P.: Multiple orthogonal geodesic chords and a proof of Seifert’s conjecture on brake orbits. arXiv:2002.09687 (2022)

  14. Gluck, H., Ziller, W.: Existence of periodic motions of conservative systems. In: Seminar on Minimal Submanifolds (1983)

    Google Scholar 

  15. Gray, C.G., Karl, G., Novikov, V.A.: The four variational principles of mechanics. Ann. Phys. 251(1), 1–25 (1996)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Grinspun, E., Wardetzky, M.: Discrete differential geometry: an applied introduction. In: SIGGRAPH (2008)

    Google Scholar 

  17. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  18. Hogan, N.: Impedance control: an approach to manipulation: part I-theory; part II-implementation; part III-applications. J. Dyn. Syst. Meas. Control 107(1), 1–24 (1985)

    CrossRef  Google Scholar 

  19. Hogan, S.J., Homer, M.E.: A method for finding all possible periodic orbits in piecewise continuous mechanical systems of arbitrary dimension. In: Moon, F.C. (ed.) IUTAM Symposium on New Applications of Nonlinear and Chaotic Dynamics in Mechanics. Solid Mechanics and its Applications, vol. 63, pp. 273–282. Springer, Dordrecht (1999). https://doi.org/10.1007/978-94-011-5320-1_28

    CrossRef  Google Scholar 

  20. Holmes, P., Full, R.J., Koditschek, D., Guckenheimer, J.: The dynamics of legged locomotion: models, analyses, and challenges. SIAM Rev. 48(2), 207–304 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar 

  21. Jahn, B., Watermann, L., Reger, J.: On the design of stable periodic orbits of a triple pendulum on a cart with experimental validation. Automatica 125, 109403 (2021)

    CrossRef  MathSciNet  MATH  Google Scholar 

  22. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009)

    CrossRef  Google Scholar 

  23. Khatib, O.: A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation. IEEE J. Robot. Autom. 3(1), 43–53 (1987)

    CrossRef  Google Scholar 

  24. Lee, J.M.: Introduction to Riemannian Manifolds. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-91755-9

    CrossRef  MATH  Google Scholar 

  25. Lee, J.M.: Introduction to Topological Manifolds. Springer, Heidelberg (2011). https://doi.org/10.1007/978-1-4419-7940-7

    CrossRef  MATH  Google Scholar 

  26. de Luca, A., Lucibello, P.: A general algorithm for dynamic feedback linearization of robots with elastic joints. In: IEEE International Conference on Robotics and Automationv Vol. 1, 504–510 (1998)

    Google Scholar 

  27. Lynch, K.M., Park, F.C.: Modern Robotics: Mechanics, Planning, and Control, 1st edn. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  28. McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–82 (1990)

    CrossRef  Google Scholar 

  29. Morgan, F.: Riemannian Geometry: A Beginners Guide, 2nd edn. A K Peters/CRC Press, New York (2020)

    Google Scholar 

  30. Murray, R.M., Sastry, S.S., Li, Z.: A Mathematical Introduction to Robotic Manipulation, 1st edn. CRC Press Inc., Boca Raton (1994)

    MATH  Google Scholar 

  31. Needham, T.: Visual Differential Geometry and Forms: A Mathematical Drama in Five Acts. Princeton University Press, Princeton (2021)

    CrossRef  MATH  Google Scholar 

  32. Phipps, E., Casey, R., Guckenheimer, J.: Periodic orbits of hybrid systems and parameter estimation via AD. In: Bücker, M., Corliss, G., Naumann, U., Hovland, P., Norris, B. (eds.) Automatic Differentiation: Applications, Theory, and Implementations. LNCSE, vol. 50, pp. 211–223. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-28438-9_19

    CrossRef  MATH  Google Scholar 

  33. Rosenberg, R.M.: On nonlinear vibrations of systems with many degrees of freedom. Adv. Appl. Mech. 9, 155–242 (1966)

    CrossRef  Google Scholar 

  34. Saiki, Y.: Numerical detection of unstable periodic orbits in continuous time dynamical systems with chaotic behaviors. Nonlinear Process. Geophys. 14(5), 615–620 (2007)

    CrossRef  Google Scholar 

  35. Segerman, H.: Visualizing Mathematics with 3D Printing. Johns Hopkins University Press (2016)

    Google Scholar 

  36. Seifert, H.: Periodische Bewegungen mechanischer Systeme. Math. Zeitschrift 51(2), 197–216 (1948)

    CrossRef  MathSciNet  MATH  Google Scholar 

  37. Shaw, S.W., Pierre, C.: Normal modes for non-linear vibratory systems. J. Sound Vibr. 164(1), 85–124 (1993)

    CrossRef  MATH  Google Scholar 

  38. Shinbrot, T., Grebogi, C., Wisdom, J., Yorke, J.A.: Chaos in a double pendulum. Am. J. Phys. 60(6), 491–499 (1992)

    CrossRef  Google Scholar 

  39. Sussman, G.J., Wisdom, J.: Functional Differential Geometry. The MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  40. Sussman, G.J., Wisdom, J.: Structure and Interpretation of Classical Mechanics, 2nd edn. The MIT Press, Cambridge (2015)

    MATH  Google Scholar 

Download references

Acknowledgments

We thank Noémie Jaquier and Alexander Dietrich for their feedback!

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Sachtler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Albu-Schäffer, A., Sachtler, A. (2023). What Can Algebraic Topology and Differential Geometry Teach Us About Intrinsic Dynamics and Global Behavior of Robots?. In: Billard, A., Asfour, T., Khatib, O. (eds) Robotics Research. ISRR 2022. Springer Proceedings in Advanced Robotics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-031-25555-7_32

Download citation