Abstract
Traditionally, robots are regarded as universal motion generation machines. They are designed mainly by kinematics considerations while the desired dynamics is imposed by strong actuators and high-rate control loops. As an alternative, one can first consider the robot’s intrinsic dynamics and optimize it in accordance with the desired tasks. Therefore, one needs to better understand intrinsic, uncontrolled dynamics of robotic systems. In this paper we focus on periodic orbits, as fundamental dynamic properties with many practical applications. Algebraic topology and differential geometry provide some fundamental statements about existence of periodic orbits. As an example, we present periodic orbits of the simplest multi-body system: the double-pendulum in gravity. This simple system already displays a rich variety of periodic orbits. We classify these into three classes: toroidal orbits, disk orbits and nonlinear normal modes. Some of these we found by geometrical insights and some by numerical simulation and sampling.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
- 2.
We use Einstein notation in this paper: whenever one up-down pair of indices match, we implicitly sum over them. Example: \(g_{ij}a^i b^j := \sum _i \sum _j g_{ij}a^i b^j\).
References
Albu-Schäffer, A., Della Santina, C.: A review on nonlinear modes in conservative mechanical systems. Annu. Rev. Control. 50, 49–71 (2020)
Albu-Schäffer, A., Lakatos, D., Stramigioli, S.: Strict nonlinear normal modes of systems characterized by scalar functions on Riemannian manifolds. IEEE Robotics and Automation Letters 6(2), 1910–1917 (2021)
Albu-Schäffer, A., Ott, C., Hirzinger, G.: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int. J. Robot. Res. 26(1), 23–39 (2007)
Arnold, V.I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, 2nd edn. Springer, New York (1989)
Ascher, U.M.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1995)
Biess, A., Liebermann, D.G., Flash, T.: A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics. J. Neurosci. 27(48), 13045–13064 (2007)
Bjelonic, F., Sachtler, A., Albu-Schaffer, A., Della Santina, C.: Experimental closed-loop excitation of nonlinear normal modes on an elastic industrial robot. IEEE Robot. Autom. Lett. 7(2), 1689–1696 (2022)
Brooks, R.A.: Elephants don’t play chess. Robot. Auton. Syst. 6, 3–15 (1990). Designing Autonomous Agents
Cartan, H., Eilenberg, S.: Homological Algebra. Princeton University Press, Princeton (1956)
Casetti, L., Pettini, M., Cohen, E.G.D.: Geometric approach to Hamiltonian dynamics and statistical mechanics. Phys. Rep. 337(3), 237–341 (2000)
Dankowicz, H., Schilder, F.: Recipes for Continuation. Society for Industrial and Applied Mathematics, Philadelphia (2013)
Di Cairano, L., Gori, M., Pettini, M.: Coherent Riemanniangeometric description of Hamiltonian order and chaos with Jacobi metric. Chaos Interdisc. J. Nonlinear Sci. 29(12), 123134 (2019)
Giambó, R., Giannoni, F., Piccione, P.: Multiple orthogonal geodesic chords and a proof of Seifert’s conjecture on brake orbits. arXiv:2002.09687 (2022)
Gluck, H., Ziller, W.: Existence of periodic motions of conservative systems. In: Seminar on Minimal Submanifolds (1983)
Gray, C.G., Karl, G., Novikov, V.A.: The four variational principles of mechanics. Ann. Phys. 251(1), 1–25 (1996)
Grinspun, E., Wardetzky, M.: Discrete differential geometry: an applied introduction. In: SIGGRAPH (2008)
Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
Hogan, N.: Impedance control: an approach to manipulation: part I-theory; part II-implementation; part III-applications. J. Dyn. Syst. Meas. Control 107(1), 1–24 (1985)
Hogan, S.J., Homer, M.E.: A method for finding all possible periodic orbits in piecewise continuous mechanical systems of arbitrary dimension. In: Moon, F.C. (ed.) IUTAM Symposium on New Applications of Nonlinear and Chaotic Dynamics in Mechanics. Solid Mechanics and its Applications, vol. 63, pp. 273–282. Springer, Dordrecht (1999). https://doi.org/10.1007/978-94-011-5320-1_28
Holmes, P., Full, R.J., Koditschek, D., Guckenheimer, J.: The dynamics of legged locomotion: models, analyses, and challenges. SIAM Rev. 48(2), 207–304 (2006)
Jahn, B., Watermann, L., Reger, J.: On the design of stable periodic orbits of a triple pendulum on a cart with experimental validation. Automatica 125, 109403 (2021)
Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009)
Khatib, O.: A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation. IEEE J. Robot. Autom. 3(1), 43–53 (1987)
Lee, J.M.: Introduction to Riemannian Manifolds. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-91755-9
Lee, J.M.: Introduction to Topological Manifolds. Springer, Heidelberg (2011). https://doi.org/10.1007/978-1-4419-7940-7
de Luca, A., Lucibello, P.: A general algorithm for dynamic feedback linearization of robots with elastic joints. In: IEEE International Conference on Robotics and Automationv Vol. 1, 504–510 (1998)
Lynch, K.M., Park, F.C.: Modern Robotics: Mechanics, Planning, and Control, 1st edn. Cambridge University Press, Cambridge (2017)
McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–82 (1990)
Morgan, F.: Riemannian Geometry: A Beginners Guide, 2nd edn. A K Peters/CRC Press, New York (2020)
Murray, R.M., Sastry, S.S., Li, Z.: A Mathematical Introduction to Robotic Manipulation, 1st edn. CRC Press Inc., Boca Raton (1994)
Needham, T.: Visual Differential Geometry and Forms: A Mathematical Drama in Five Acts. Princeton University Press, Princeton (2021)
Phipps, E., Casey, R., Guckenheimer, J.: Periodic orbits of hybrid systems and parameter estimation via AD. In: Bücker, M., Corliss, G., Naumann, U., Hovland, P., Norris, B. (eds.) Automatic Differentiation: Applications, Theory, and Implementations. LNCSE, vol. 50, pp. 211–223. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-28438-9_19
Rosenberg, R.M.: On nonlinear vibrations of systems with many degrees of freedom. Adv. Appl. Mech. 9, 155–242 (1966)
Saiki, Y.: Numerical detection of unstable periodic orbits in continuous time dynamical systems with chaotic behaviors. Nonlinear Process. Geophys. 14(5), 615–620 (2007)
Segerman, H.: Visualizing Mathematics with 3D Printing. Johns Hopkins University Press (2016)
Seifert, H.: Periodische Bewegungen mechanischer Systeme. Math. Zeitschrift 51(2), 197–216 (1948)
Shaw, S.W., Pierre, C.: Normal modes for non-linear vibratory systems. J. Sound Vibr. 164(1), 85–124 (1993)
Shinbrot, T., Grebogi, C., Wisdom, J., Yorke, J.A.: Chaos in a double pendulum. Am. J. Phys. 60(6), 491–499 (1992)
Sussman, G.J., Wisdom, J.: Functional Differential Geometry. The MIT Press, Cambridge (2012)
Sussman, G.J., Wisdom, J.: Structure and Interpretation of Classical Mechanics, 2nd edn. The MIT Press, Cambridge (2015)
Acknowledgments
We thank Noémie Jaquier and Alexander Dietrich for their feedback!
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Albu-Schäffer, A., Sachtler, A. (2023). What Can Algebraic Topology and Differential Geometry Teach Us About Intrinsic Dynamics and Global Behavior of Robots?. In: Billard, A., Asfour, T., Khatib, O. (eds) Robotics Research. ISRR 2022. Springer Proceedings in Advanced Robotics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-031-25555-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-25555-7_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25554-0
Online ISBN: 978-3-031-25555-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)