Abstract
We consider the problem of identifying material parameters of a deformable object, such as elastic moduli, by non-destructive robotic manipulation. We assume known geometry and mass, a reliable fixed grasp, and the ability to track the positions of a few points on the object surface. We collect a dataset of grasp pose sequences and corresponding point position sequences. We represent the object by a tetrahedral Finite Element Method (FEM) mesh and optimize the material parameters to minimize the difference between the real and predicted observations. We use a collocation-type formulation where the sequence of FEM mesh states are decision variables, and the dynamics are encoded as constraints. Sparsity patterns in the constraints make this problem tractable despite the large number of variables. Experiments show that our approach is computationally feasible and able to adequately re-identificy simulated material parameters.
Keywords
- Dynamical systems
- Parameter estimation
- Deformable objects
G.S. Sukhatme holds concurrent appointments as a Professor at USC and as an Amazon Scholar. This paper describes work performed at USC and is not associated with Amazon. This work was supported by a NASA Space Technology Research Fellowship, grant number 80NSSC19K1182.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Akkaya, I., et al.: Solving Rubik’s Cube with a Robot Hand (2019)
Armstrong, B., Khatib, O., Burdick, J.: The explicit dynamic model and inertial parameters of the PUMA 560 arm. In: Proceedings of the 1986 IEEE International Conference on Robotics and Automation, vol. 3, pp. 510–518. IEEE
Barbič, J., James, D.L.: Real-time subspace integration for St. Venant-Kirchhoff deformable models. In: ACM Transactions on Graphics (TOG), vol. 24, no. 3, pp. 982–990 (2005)
Belytschko, T., et al.: Nonlinear Finite Elements for Continua and Structures. John Wiley & Sons, Hoboken (2014)
Bezanson, J., et al.: Julia: a fresh approach to numerical computing. In: SIAM Review, vol. 59, no. 1, pp. 65–98 (2017). https://doi.org/10.1137/141000671
Coumans, E., Bai, Y.: PyBullet, a Python module for physics simulation for games, robotics and machine learning (2016). http://pybullet.org
de Avila Belbute-Peres, F., et al.: End-to-end differentiable physics for learning and control. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Elmqvist, H., Mattsson, S.E., Otter, M.: Modelica-a language for physical system modeling, visualization and interaction. In: Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design (Cat. No. 99TH8404), pp. 630–639. IEEE
Ha, H., Song, S.: Flingbot: the unreasonable effectiveness of dynamic manipulation for cloth unfolding. In: Conference on Robot Learning. PMLR, pp. 24–33 (2022)
Hager, W.W., Zhang, H.: Algorithm 851: CG\(_{D}\)ESCENT, a conjugate gradient method with guaranteed descent. In: ACM Transactions on Mathematical Software, vol. 32, no. 1, pp. 113–137 (2006). ISSN: 0098-3500. https://doi.org/10.1145/1132973.1132979
Hahn, D., et al.: Real2sim: visco-elastic parameter estimation from dynamic motion. In: ACM Transactions on Graphics (TOG), vol. 38, no. 6, pp. 1–13 (2019)
Heiden, E., et al.: Disect: a differentiable simulation engine for autonomous robotic cutting. In: Robotics: Science and Systems (2021)
Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley. ISBN: 978-0-471-82304-9
Hu, Y., et al.: DiffTaichi: differentiable programming for physical simulation. In: ICLR (2020)
Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), vol. 3, pp. 2149–2154. https://doi.org/10.1109/IROS.2004.1389727
Kutz, J.N., et al.: Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems. SIAM, Philadelphia (2016)
Levine, S., et al.: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. http://arxiv.org/abs/1603.02199
Lim, V., et al.: Planar robot casting with real2sim2real self-supervised learning (2021)
MacNeal, R.H., McCormick, C.W.: The NASTRAN computer program for structural analysis. In: Computers & Structures, vol. 1, no. 3, pp. 389–412 (1971)
Mahnken, R.: Identification of material parameters for constitutive equations. In: Encyclopedia of Computational Mechanics 2nd edn. pp. 1–21. John Wiley & Sons, Ltd. ISBN: 978-1-119-17681-7. https://doi.org/10.1002/9781119176817.ecm2043
Mitrano, P., McConachie, D., Berenson, D.: Learning where to trust unreliable models in an unstructured world for deformable object manipulation. In: Science Robotics, vol. 6, no. 54, p. eabd8170 (2021). https://doi.org/10.1126/scirobotics.abd8170, https://www.science.org/doi/abs/10.1126/scirobotics.abd8170
Mogensen, P.K., Riseth, A.N.: Optim: a mathematical optimization package for Julia. J. Open Source Softw. 3(24), 615 (2018). https://doi.org/10.21105/joss.00615
Müller, M., et al.: Detailed rigid body simulation with extended position based dynamics. In: Computer Graphics Forum, vol. 39, pp. 101–112. Wiley Online Library
Nathan, M.: Newmark. American Society of Civil Engineers, A Method of Computation for Structural Dynamics (1959)
Preiss, J.A., et al.: Tracking fast trajectories with a deformable object using a learned model. In: IEEE Conference on Robotics and Automation (2022)
Reece, A.R.: The fundamental equation of earth-moving mechanics. In: Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, vol. 179, no. 6, pp. 16–22. SAGE Publications, London (1964)
Sharma, A., Azizan, N., Pavone, M.: Sketching curvature for efficient out-of-distribution detection for deep neural networks. In: de Campos, C., Maathuis, M.H. (ed.) Proceedings of the 37th Conference on Uncertainty in Artificial Intelligence, vol. 161. Proceedings of Machine Learning Research. PMLR, 27–30 July 2021, pp. 1958–1967. https://proceedings.mlr.press/v161/sharma21a.html
Slotine, J.J.E., Li, W., et al.: Applied Nonlinear Control, vol. 199. Prentice Hall Englewood Cliffs, New Jersey (1991)
Tassa, Y., Erez, T., Todorov, E.: Synthesis and stabilization of complex behaviors through online trajectory optimization. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4906–4913. IEEE
Todorov, E., Erez, T., Tassa, Y.: Mujoco: a physics engine for model-based control. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033. IEEE
Wang, B., et al.: Deformation capture and modeling of soft objects. ACM Trans. Graph. 34(4), 1–94 (2015)
Wang, B., Zheng, M., Barbič, J.: Adjustable constrained soft-tissue dynamics. In: Computer Graphics Forum, vol. 39, no .7, pp. 69–79 (2020). ISSN: 1467-8659. https://doi.org/10.1111/cgf.14127, https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14127
Weng, T., et al.: FabricFlowNet: bimanual cloth manipulation with a flow-based policy. In: Conference on Robot Learning (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Millard, D., Preiss, J.A., Barbič, J., Sukhatme, G.S. (2023). Parameter Estimation for Deformable Objects in Robotic Manipulation Tasks. In: Billard, A., Asfour, T., Khatib, O. (eds) Robotics Research. ISRR 2022. Springer Proceedings in Advanced Robotics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-031-25555-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-25555-7_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25554-0
Online ISBN: 978-3-031-25555-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)