Skip to main content

6N-DoF Pose Tracking for Tensegrity Robots

  • Conference paper
  • First Online:
Robotics Research (ISRR 2022)

Abstract

Tensegrity robots, which are composed of compressive elements (rods) and flexible tensile elements (e.g., cables), have a variety of advantages, including flexibility, low weight, and resistance to mechanical impact. Nevertheless, the hybrid soft-rigid nature of these robots also complicates the ability to localize and track their state. This work aims to address what has been recognized as a grand challenge in this domain, i.e., the state estimation of tensegrity robots through a marker-less, vision-based method, as well as novel, on-board sensors that can measure the length of the robot’s cables. In particular, an iterative optimization process is proposed to track the 6-DoF pose of each rigid element of a tensegrity robot from an RGB-D video as well as endcap distance measurements from the cable sensors. To ensure that the pose estimates of rigid elements are physically feasible, i.e., they are not resulting in collisions between rods or with the environment, physical constraints are introduced during the optimization. Real-world experiments are performed with a 3-bar tensegrity robot, which performs locomotion gaits. Given ground truth data from a motion capture system, the proposed method achieves less than 1 cm translation error and 3\(^\circ \) rotation error, which significantly outperforms alternatives. At the same time, the approach can provide accurate pose estimation throughout the robot’s motion, while motion capture often fails due to occlusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://sites.google.com/view/tensegrity-robot-perception.

References

  1. Baines, R.L., Booth, J.W., Kramer-Bottiglio, R.: Rolling soft membrane-driven tensegrity robots. IEEE Robot. Autom. Lett. 5(4), 6567–6574 (2020)

    Article  Google Scholar 

  2. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606. Spie (1992)

    Google Scholar 

  3. Booth, J.W., Cyr-Choiniere, O., Case, J.C., Shah, D., Yuen, M.C., Kramer-Bottiglio, R.: Surface actuation and sensing of a tensegrity structure using robotic skins. Soft Rob. 8(5), 531–541 (2021)

    Article  Google Scholar 

  4. Bruce, J., Caluwaerts, K., Iscen, A., Sabelhaus, A.P., SunSpiral, V.: Design and evolution of a modular tensegrity robot platform. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 3483–3489. IEEE (2014)

    Google Scholar 

  5. Bruce, J., et al.: SUPERball: exploring tensegrities for planetary probes. In: 12th International Symposium on Artificial Intelligence, Robotics, and Automation in Space (i-SAIRAS) (2014)

    Google Scholar 

  6. Caluwaerts, K., Bruce, J., Friesen, J. M., SunSpiral, V.: State estimation for tensegrity robots. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1860–1865. IEEE (2016)

    Google Scholar 

  7. Caluwaerts, K., et al.: Design and control of compliant tensegrity robots through simulation and hardware validation. J. R. Soc. Interface 11(98), 20140520 (2014)

    Article  Google Scholar 

  8. Chen, M., Liu, J., Skelton, R.E.: Design and control of tensegrity morphing airfoils. Mech. Res. Commun. 103, 103480 (2020)

    Article  Google Scholar 

  9. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vis. Comput. 10(3), 145–155 (1992)

    Article  Google Scholar 

  10. Friesen, J., Pogue, A., Bewley, T., de Oliveira, M., Skelton, R., Sunspiral, V.: DuCTT: A tensegrity robot for exploring duct systems. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4222–4228. IEEE (2014)

    Google Scholar 

  11. Johnson, W.R., Booth, J., Kramer-Bottiglio, R.: Integrated sensing in robotic skin modules. In: 2021 IEEE Sensors, pp. 1–4. IEEE (2021)

    Google Scholar 

  12. Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. A: Cryst. Phy. Diffr. Theor. Gen. Crystallogr. 32(5), 922–923 (1976)

    Article  Google Scholar 

  13. Katz, S., Tal, A., Basri, R.: Direct visibility of point sets. In: ACM SIGGRAPH 2007 papers, pages 24-es (2007)

    Google Scholar 

  14. Kim, K., Moon, D., Bin, J.Y., Agogino, A.M.: Design of a spherical tensegrity robot for dynamic locomotion. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 450–455. IEEE (2017)

    Google Scholar 

  15. Kuzdeuov, A., Rubagotti, M., Varol, H.A.: Neural network augmented sensor fusion for pose estimation of tensegrity manipulators. IEEE Sens. J. 20(7), 3655–3666 (2020)

    Article  Google Scholar 

  16. Lessard, S., et al.: A bio-inspired tensegrity manipulator with multi-DOF, structurally compliant joints. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5515–5520. IEEE (2016)

    Google Scholar 

  17. Moldagalieva, A., Fadeyev, D., Kuzdeuov, A., Khan, V., Alimzhanov, B., Varol, H.A.: Computer vision-based pose estimation of tensegrity robots using fiducial markers. In: 2019 IEEE/SICE International Symposium on System Integration (SII), pp. 478–483 (2019)

    Google Scholar 

  18. Mundermann, L., Corazza, S., Andriacchi, T.P.: Accurately measuring human movement using articulated ICP with soft-joint constraints and a repository of articulated models. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–6. IEEE (2007)

    Google Scholar 

  19. NASA. NASA Tensegrity Robotics Toolkit, Accessed (2020). https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim

  20. Park, J., Zhou, Q.Y., Koltun, V.: Colored point cloud registration revisited. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 143–152 (2017)

    Google Scholar 

  21. Rusinkiewicz, S. Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings of the Third International Conference on 3-D Digital Imaging and Modeling, pp. 145–152. IEEE (2001)

    Google Scholar 

  22. Sabelhaus, A.P., et al.: Design, simulation, and testing of a flexible actuated spine for quadruped robots. arXiv preprint arXiv:1804.06527 (2018)

  23. Segal, A., Haehnel, D., Thrun, S.: Generalized-ICP. In: Robotics: Science and Systems, vol. 2, p. 435. Seattle, WA (2009)

    Google Scholar 

  24. Shah, D.S., et al.: Tensegrity robotics. Soft Robot. 9, 639–656 (2021)

    Article  Google Scholar 

  25. Surovik, D., Bruce, J., Wang, K., Vespignani, M., Bekris, K.E. Any-axis tensegrity rolling via bootstrapped learning and symmetry reduction. In: International Symposium on Experimental Robotics (ISER), Buenos Aires, Argentina (2018)

    Google Scholar 

  26. Surovik, D., Wang, K., Vespignani, M., Bruce, J., Bekris, K.E.: Adaptive tensegrity locomotion: controlling a compliant icosahedron with symmetry-reduced reinforcement learning. Int. J. Robot. Res. (IJRR) 40, 375–396 (2019)

    Article  Google Scholar 

  27. Tagliasacchi, A., Schröder, M., Tkach, A., Bouaziz, S., Botsch, M., Pauly, M.: Robust articulated-ICP for real-time hand tracking. In: Computer Graphics Forum, vol. 34, p. 101–114. Wiley Online Library (2015)

    Google Scholar 

  28. Tietz, B.R., Carnahan, R.W., Bachmann, R.J., Quinn, R.D., SunSpiral, V.: Tetraspine: Robust terrain handling on a tensegrity robot using central pattern generators. In: 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 261–267. IEEE (2013)

    Google Scholar 

  29. Vespignani, M., Friesen, J.M., SunSpiral, V., Bruce, J.: Design of superball v2, a compliant tensegrity robot for absorbing large impacts. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2865–2871. IEEE (2018)

    Google Scholar 

  30. Wang, K., Aanjaneya, M., Bekris, K.: A first principles approach for data-efficient system identification of spring-rod systems via differentiable physics engines. In: Bayen, A.M., et al. (eds.) Proceedings of the 2nd Conference on Learning for Dynamics and Control, volume 120 of Proceedings of Machine Learning Research, pp. 651–665. PMLR, 10–11 June 2020

    Google Scholar 

  31. Wang, K., Aanjaneya, M., Bekris, K.: Sim2sim evaluation of a novel data-efficient differentiable physics engine for tensegrity robots. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1694–1701. IEEE (2021)

    Google Scholar 

  32. Wang, K., Aanjaneya, M., Bekris, K.: A recurrent differentiable engine for modeling tensegrity robots trainable with low-frequency data. In: 2022 IEEE International Conference on Robotics and Automation (ICRA) (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Bekris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, S. et al. (2023). 6N-DoF Pose Tracking for Tensegrity Robots. In: Billard, A., Asfour, T., Khatib, O. (eds) Robotics Research. ISRR 2022. Springer Proceedings in Advanced Robotics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-031-25555-7_10

Download citation

Publish with us

Policies and ethics