Skip to main content

MAG-PUF: Magnetic Physical Unclonable Functions for Device Authentication in the IoT

  • Conference paper
  • First Online:
Security and Privacy in Communication Networks (SecureComm 2022)

Abstract

Authenticating Internet of Things (IoT) devices is still a challenge, especially in deployments involving low-cost constrained nodes. The cited class of IoT devices hardly support dynamic re-keying solutions, hence being vulnerable to several attacks. To provide a viable general-purpose solution, in this paper we propose MAG-PUF, a novel lightweight authentication scheme based on the usage of unintentional magnetic emissions generated by IoT devices as Physical Unclonable Functions (PUFs). Specifically, through MAG-PUF, we collect unintentional magnetic emissions produced by the IoT devices at run-time while executing pre-defined reference functions, and we verify the match of such emissions with the profiles collected at enrolment time, providing device authentication. MAG-PUF enjoys unique flexibility, allowing the selection of an unlimited number and types of reference functions. We extensively assessed the performance of MAG-PUF through experiments on 25 Arduino devices and a set of exemplary reference functions. We obtained an authentication accuracy above 99%, hence proving the feasibility of using code-driven magnetic emissions as a lightweight, efficient, and robust PUF for IoT devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aaronia: PBS2 EMC Probe (2021). https://tinyurl.com/2syhszbw, Accessed 31 July 2022

  2. Afghah, F., Cambou, B., Abedini, M., Zeadally, S.: A reram physically unclonable function (reram puf)-based approach to enhance authentication security in software defined wireless networks. Int. J. Wirel. Inf. Netw. 25(2), 117–129 (2018)

    Article  Google Scholar 

  3. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015)

    Article  Google Scholar 

  4. Bossuet, L., Ngo, X.T., Cherif, Z., Fischer, V.: A puf based on a transient effect ring oscillator and insensitive to locking phenomenon. IEEE Trans. Emerg. Topics Comput. 2(1), 30–36 (2013)

    Article  Google Scholar 

  5. Callan, R., Behrang, F., Zajic, A., Prvulovic, M., Orso, A.: Zero-overhead profiling via em emanations. In: Proceedings of the 25th International Symposium on Software Testing and Analysis, pp. 401–412 (2016)

    Google Scholar 

  6. Cambou, B., Orlowski, M.: Puf designed with resistive ram and ternary states. In: Proceedings of the 11th Annual Cyber and Information Security Research Conference, pp. 1–8 (2016)

    Google Scholar 

  7. Camurati, G. et al.: Screaming channels: when electromagnetic side channels meet radio transceivers. In: ACM CCS, pp. 163–177 (2018)

    Google Scholar 

  8. Chatterjee, B., Das, D., Maity, S., Sen, S.: Rf-puf: enhancing IoT security through authentication of wireless nodes using in-situ machine learning. IEEE Internet Things J. 6(1), 388–398 (2018)

    Article  Google Scholar 

  9. Claes, M., van der Leest, V., Braeken, A.: Comparison of SRAM and FF PUF in 65 nm technology. In: Laud, P. (ed.) NordSec 2011. LNCS, vol. 7161, pp. 47–64. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29615-4_5

    Chapter  Google Scholar 

  10. DeJean, G., Kirovski, D.: RF-DNA: radio-frequency certificates of authenticity. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 346–363. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_24

    Chapter  Google Scholar 

  11. Delvaux, J., Verbauwhede, I.: Side channel modeling attacks on 65 nm arbiter PUFs exploiting CMOS device noise. In: 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 137–142. IEEE (2013)

    Google Scholar 

  12. Gassend, B., Clarke, D., Van Dijk, M., Devadas, S.: Silicon physical random functions. In: Proceedings of the 9th ACM Conference on Computer and Communications Security, pp. 148–160 (2002)

    Google Scholar 

  13. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_5

    Chapter  Google Scholar 

  14. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: Physical unclonable functions and public-key crypto for fpga ip protection. In: 2007 International Conference on Field Programmable Logic and Applications, pp. 189–195. IEEE (2007)

    Google Scholar 

  15. Guajardo, J.: Anti-counterfeiting, key distribution, and key storage in an ambient world via physical unclonable functions. Inf. Syst. Front. 11(1), 19–41 (2009)

    Article  Google Scholar 

  16. Han, Y., Etigowni, S., Liu, H., Zonouz, S., Petropulu, A.: Watch me, but don’t touch me! contactless control flow monitoring via electromagnetic emanations. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1095–1108 (2017)

    Google Scholar 

  17. Holcomb, D.E., Burleson, W.P., Fu, K.: Power-up sram state as an identifying fingerprint and source of true random numbers. IEEE Trans. Comput. 58(9), 1198–1210 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ibrahim, O.A., Sciancalepore, S., Di Pietro, R.: Mag-puf - authenticating iot devices via magnetic physical unclonable functions. In: Proceedings of the 15th ACM Conference on Security and Privacy in Wireless and Mobile Networks, WiSec 2022, pp. 290–291. ACM, New York (2022)

    Google Scholar 

  19. Ibrahim, O.A., Sciancalepore, S., Oligeri, G., Pietro, R.D.: Magneto: fingerprinting usb flash drives via unintentional magnetic emissions. ACM Trans. Embedded Comput. Syst. (TECS) 20(1), 1–26 (2020)

    Google Scholar 

  20. Islam, M.N., Kundu, S.: Enabling ic traceability via blockchain pegged to embedded puf. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 24(3), 1–23 (2019)

    Article  Google Scholar 

  21. Khan, H.A., Sehatbakhsh, N., Nguyen, L.N., Prvulovic, M., Zajić, A.: Malware detection in embedded systems using neural network model for electromagnetic side-channel signals. J. Hardware Syst. Secur. 3(4), 305–318 (2019)

    Article  Google Scholar 

  22. Khan, H.A., et al.: Idea: intrusion detection through electromagnetic-signal analysis for critical embedded and cyber-physical systems. IEEE Trans. Depend. Secure Comput. (2019)

    Google Scholar 

  23. Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: The butterfly puf protecting ip on every fpga. In: 2008 IEEE International Workshop on Hardware-Oriented Security and Trust, pp. 67–70. IEEE (2008)

    Google Scholar 

  24. Maes, R.: Physically Unclonable Functions: Constructions, Properties and Applications. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41395-7

    Book  MATH  Google Scholar 

  25. Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic pufs from flip-flops on reconfigurable devices. In: 3rd Benelux Workshop on Information and System Security (WISSec 2008), vol. 17, p. 2008 (2008)

    Google Scholar 

  26. Maiti, A., Casarona, J., McHale, L., Schaumont, P.: A large scale characterization of ro-puf. In: 2010 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 94–99. IEEE (2010)

    Google Scholar 

  27. Maiti, A., Schaumont, P.: Improved ring oscillator puf: an fpga-friendly secure primitive. J. Cryptol. 24(2), 375–397 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. McGrath, T., et al.: A PUF taxonomy. Appl. Phys. Rev. 6(1), 011303 (2019)

    Article  Google Scholar 

  29. Nazari, A., Sehatbakhsh, N., Alam, M., Zajic, A., Prvulovic, M.: Eddie: em-based detection of deviations in program execution. In: Proceedings of the 44th Annual International Symposium on Computer Architecture, pp. 333–346 (2017)

    Google Scholar 

  30. Ostrovsky, R., Scafuro, A., Visconti, I., Wadia, A.: Universally composable secure computation with (malicious) physically uncloneable functions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 702–718. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_41

    Chapter  Google Scholar 

  31. Sahoo, D.P., Mukhopadhyay, D., Chakraborty, R.S., Nguyen, P.H.: A multiplexer-based arbiter puf composition with enhanced reliability and security. IEEE Trans. Comput. 67(3), 403–417 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sangodoyin, S., et al.: Remote monitoring and propagation modeling of em side-channel signals for iot device security. In: 2020 14th European Conference on Antennas and Propagation (EuCAP), pp. 1–5. IEEE (2020)

    Google Scholar 

  33. Schölkopf, B., Smola, A.J., Bach, F., et al.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT press, Cambridge (2002)

    Google Scholar 

  34. Sciancalepore, S., Oligeri, G., Piro, G., Boggia, G., Di Pietro, R.: EXCHANge: securing IoT via channel anonymity. Comput. Commun. 134, 14–29 (2019)

    Article  Google Scholar 

  35. Sehatbakhsh, N., Alam, M., Nazari, A., Zajic, A., Prvulovic, M.: Syndrome: spectral analysis for anomaly detection on medical iot and embedded devices. In: 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 1–8. IEEE (2018)

    Google Scholar 

  36. Sehatbakhsh, N., Nazari, A., Khan, H., Zajic, A., Prvulovic, M.: Emma: Hardware/software attestation framework for embedded systems using electromagnetic signals. In: Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, pp. 983–995 (2019)

    Google Scholar 

  37. Sehatbakhsh, N., Nazari, A., Zajic, A., Prvulovic, M.: Spectral profiling: observer-effect-free profiling by monitoring em emanations. In: 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 1–11. IEEE (2016)

    Google Scholar 

  38. Sehatbakhsh, N., Yilmaz, B.B., Zajic, A., Prvulovic, M.: A new side-channel vulnerability on modern computers by exploiting electromagnetic emanations from the power management unit. In: 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 123–138. IEEE (2020)

    Google Scholar 

  39. Semiconductor Eng.: IoT Device Security Makes Slow Progress (2019). https://semiengineering.com/iot-device-security-makes-slow-progress/, Accessed 31 July 2022

  40. Shamsoshoara, A., Korenda, A., Afghah, F., Zeadally, S.: A survey on physical unclonable function (PUF)-based security solutions for Internet of Things. Comput. Netw. 183, 107593 (2020)

    Article  Google Scholar 

  41. Siow, E., et al.: Analytics for the Internet of Things: a survey. ACM Comput. Surv. (CSUR) 51(4), 1–36 (2018)

    Article  Google Scholar 

  42. Statista: Internet of Things (IoT) and non-IoT active device connections worldwide from 2010 to 2025 (2020). https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/, Accessed 31 July 2022

  43. Su, Y., Holleman, J., Otis, B.P.: A digital 1.6 pj/bit chip identification circuit using process variations. IEEE J. Solid-State Circ. 43(1), 69–77 (2008)

    Google Scholar 

  44. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key generation. In: 2007 44th ACM/IEEE Design Automation Conference, pp. 9–14. IEEE (2007)

    Google Scholar 

  45. Treedix: Arduino UNO (2021). https://tinyurl.com/TreedixArduinoUNO, Accessed 31 July 2022

  46. Tuyls, P., Škoric, B., Kevenaar, T.: Security With Noisy Data: On Private Biometrics, Secure Key Storage and Anti-Counterfeiting. Springer, Heidelberg (2007). https://doi.org/10.1007/978-1-84628-984-2

    Book  MATH  Google Scholar 

  47. Yin, C.E., Qu, G.: Temperature-aware cooperative ring oscillator puf. In: 2009 IEEE International Workshop on Hardware-Oriented Security and Trust, pp. 36–42. IEEE (2009)

    Google Scholar 

  48. Zalivaka, S.S., Ivaniuk, A.A., Chang, C.H.: Reliable and modeling attack resistant authentication of arbiter puf in fpga implementation with trinary quadruple response. IEEE Trans. Inf. Forensics Secur. 14(4), 1109–1123 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This publication was partially supported by award GSRA6-1-0528-19046, from the QNRF-Qatar National Research Fund, a member of Qatar Foundation. The information and views set out in this publication are those of the authors and do not necessarily reflect the official opinion of the QNRF. This publication was also partially supported by the INTERSECT project, Grant No. NWA.1162.18.301, funded by Netherlands Organization for Scientific Research (NWO) and the NATO Science for Peace and Security Programme - MYP G5828 project “SeaSec: DronNets for Maritime Border and Port Security”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Adel Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ibrahim, O.A., Sciancalepore, S., Di Pietro, R. (2023). MAG-PUF: Magnetic Physical Unclonable Functions for Device Authentication in the IoT. In: Li, F., Liang, K., Lin, Z., Katsikas, S.K. (eds) Security and Privacy in Communication Networks. SecureComm 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 462. Springer, Cham. https://doi.org/10.1007/978-3-031-25538-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25538-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25537-3

  • Online ISBN: 978-3-031-25538-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics