Skip to main content

Insulin Delivery: An Evolution in the Technology

  • Chapter
  • First Online:
The Diabetes Textbook

Abstract

In people with diabetes, the most efficient therapeutic option available to reduce hyperglycemia continues to be insulin even though they experience numerous challenges with its use. Beginning with the syringe for injecting insulin, progressing to insulin pumps, insulin pens, and sensor-augmented pumps, the growth of diabetes technologies accelerated with the introduction of hybrid closed-loop systems, integration with consumer electronics, and cloud-based data systems. These devices have favorably improved patients’ perceptions about insulin therapy along with improving their quality of life. There has been a high-speed evolution in diabetes technologies to improve the quality of life and extend the endurance of subjects with diabetes. Though there were commendable developments in the currently available devices, many of those were prohibitively expensive. As the search for more accurate and user-friendly methods continue, advances in pumps, continuous glucose monitoring systems, and predictive algorithms can make the closed-loop system as physiologic as possible with >95% time in range and the least time spent in hypoglycemia. The ultimate dream is to develop an artificial pancreas capable of maintaining 100% time in range and 0% time below range that is affordable to everyone. Even though the mission demands enormous commitment and time, it has the potential to transform diabetes therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kesavadev J, Das AK, Unnikrishnan R, Joshi SR, Ramachandran A, Shamsudeen J, Krishnan G, Jothydev S, Mohan V. Use of insulin pumps in India: suggested guidelines based on experience and cultural differences. Diabetes Technol Ther. 2010;12(10):823–31.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Garg SK, Rewers AH, Akturk HK. Ever-increasing insulin-requiring patients globally. Diabetes Technol Ther. 2018;20:S21–S2424.

    Article  PubMed  Google Scholar 

  3. Knutsen PG, Voelker CQ, Nikkel CC. Clinical insights into a new, disposable insulin delivery device. Diabetes Spectrum. 2015;28(3):209–13.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Home P, Riddle M, Cefalu WT, Bailey CJ, Bretzel RG, Del Prato S, Leroith D, Schernthaner G, van Gaal L, Raz I. Insulin therapy in people with type 2 diabetes: opportunities and challenges? Diabetes Care. 2014;37(6):1499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kesavadev J, Saboo B, Krishna MB, Krishnan G. Evolution of insulin delivery devices: from syringes, pens, and pumps to DIY artificial pancreas. Diabetes Therapy. 2020;11:1251–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rex J, Jensen KH, Lawton SA. A review of 20 years’ experience with the NovoPen family of insulin injection devices. Clin Drug Investig. 2006;26:367–401.

    Article  CAS  PubMed  Google Scholar 

  7. Weaver KW, Hirsch IB. The hybrid closed-loop system: evolution and practical applications. Diabetes Technol Ther. 2018;20:S216–S223223.

    Article  PubMed  Google Scholar 

  8. Technology D. Standards of medical care in diabetes-2020. Diabetes Care. 2020;43:S77–88.

    Article  Google Scholar 

  9. Selam JL. Evolution of diabetes insulin delivery devices. J Diabetes Sci Technol. 2010;4(3):505–13. https://doi.org/10.1177/193229681000400302.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Milestones BD. Available from: http://www.bd.com/aboutbd/history/.

    Google Scholar 

  11. Fry A. Insulin delivery device technology 2012: where are we after 90 years? J Diabetes Sci Technol. 2012;6:947–53.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shah RB, Patel M, Maahs DM, Shah VN. Insulin delivery methods: past, present and future. Int J Pharm Investig. 2016;6:1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Exchange Supplies. The history of injecting, and the development of the syringe. https://www.exchangesupplies.org/article_history_of_injecting_and_development_of_the_syringe.php

    Google Scholar 

  14. Aronson R, Gibney MA, Oza K, Berube J, KasslerTaub K, Hirsch L. Insulin pen needles: effects of extra-thin wall needle technology on preference, confidence, and other patient ratings. Clin Ther. 2013;35:933.e4.

    Article  Google Scholar 

  15. BD. BD VeoTM insulin syringes with BD UltraFineTM 6mm 9 31G needle. https://www.bd.com/en-us/offerings/capabilities/diabetes-care/insulinsyringes/bd-veo-insulin-syringe-with-ultra-fine6mm-needle (2020).

    Google Scholar 

  16. Shaw KF, Valdez CA. Development and implementation of a U-500 regular insulin program in a federally qualified health center. Clin Diabetes. 2017;35:162–7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Novo Nordisk Blue sheet. Quarterly perspective on diabetes and chronic diseases. 2010. Available from: http://www.press.novonordisk-us.com/bluesheet-issue2/downloads/NovoNordisk_Bluesheet_Newsletter.pdf.

    Google Scholar 

  18. Novo Nordisk History. Novo Nord. https://www. novonordisk.co.in/content/dam/Denmark/HQ/aboutus/documents/HistoryBook_UK.pdf (2020).

    Google Scholar 

  19. Dunne T, Whitaker D. Prefilled insulin syringes. Anaesthesia. 2016;71:349–50.

    Article  CAS  PubMed  Google Scholar 

  20. Penfornis A, Personeni E, Borot S. Evolution of devices in diabetes management. Diabetes Technol Ther. 2011;13(Suppl 1):S93–102.

    Article  PubMed  Google Scholar 

  21. Ignaut DA, Venekamp WJ. HumaPen Memoir: a novel insulin-injecting pen with a dose-memory feature. Expert Rev Med Devices. 2007;4:793–802.

    Article  PubMed  Google Scholar 

  22. Singh R, Samuel C, Jacob JJ. A comparison of insulin pen devices and disposable plastic syringes - simplicity, safety, convenience and cost differences. Eur Endocrinol. 2018;14:47–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guerci B, Chanan N, Kaur S, Jasso-Mosqueda JG, Lew E. Lack of treatment persistence and treatment nonadherence as barriers to glycaemic control in patients with type 2 diabetes. Diabetes Ther. 2019;10:437–49.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pfützner A, Bailey T, Campos C, Kahn D, Ambers E, Niemeyer M, et al. Accuracy and preference assessment of prefilled insulin pen versus vial and syringe with diabetes patients, caregivers, and healthcare professionals. Curr Med Res Opin. 2013;29:475–81.

    Article  PubMed  Google Scholar 

  25. Xue L, Mikkelsen KH. Dose accuracy of a durable insulin pen with memory function, before and after simulated lifetime use and under stress conditions. Expert Opin Drug Deliv. 2013;10:301–6.

    Article  CAS  PubMed  Google Scholar 

  26. Hirsch IB. Does size matter? Thoughts about insulin pen needles. Diabetes Technol Ther. 2012;14:1081.

    Article  PubMed  Google Scholar 

  27. Aronson R, Gibney MA, Oza K, Bérubé J, Kassler-Taub K, Hirsch L. Insulin pen needles: effects of extra-thin wall needle technology on preference, confidence, and other patient ratings. Clin Ther. 2013;35:923–33.e4.

    Article  PubMed  Google Scholar 

  28. Hyllested-Winge J, Sparre T, Pedersen LK. NovoPen Echo() insulin delivery device. Med Devices. 2016;9:11–8.

    Article  CAS  Google Scholar 

  29. Ignaut DA, Opincar M, Lenox S. FlexPen and KwikPen prefilled insulin devices: a laboratory evaluation of ergonomic and injection force characteristics. J Diabetes Sci Technol. 2008;2:533–7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wielandt JO, Niemeyer M, Hansen MR, Bucher D, Thomsen NB. FlexTouch: a prefilled insulin pen with a novel injection mechanism with consistent high accuracy at low-(1 U), medium-(40 U), and high-(80 U) dose settings. J Diabetes Sci Technol. 2011;5:1195–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sanofi. launches specially designed ‘made in India’ re-usable insulin pen-AllStarTM Press Release. Diabetes in Control, Mar 9, 2019, https://www.diabetesincontrol.com/new-smart-pens-hoped-to-change-the-waywe-treat-diabetes/Sanofi, accessed April 13, 2023,

  32. Veasey R, Ruf CA, Bogatirsky D, Westerbacka J, Friedrichs A, Abdel-Tawab M, Adler S, Mohanasundaram S. A review of reusable insulin pens and features of TouStar—a new reusable pen with a dedicated cartridge. Diabetol Metab Syndr. 2021;13(1):1–7.

    Article  Google Scholar 

  33. Whooley S, Briskin T, Gibney MA, Blank LR, Berube J, Pflug BK. Evaluating the user performance and experience with a re-engineered 4 mm 9 32G pen needle: a randomized trial with similar length/− gauge needles. Diabetes Ther. 2019;10:697–712.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Healthworld.com. Eli Lilly launches 200 U/mL prefilled insulin pen. Econ Times.

  35. Gudiksen N, Hofstätter T, Rønn BB, Sparre T. FlexTouch: an insulin pen-injector with a low activation force across different insulin formulations, needle technologies, and temperature conditions. Diabetes Technol Ther. 2017;19:603–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Olsen BS, Lilleøre SK, Korsholm CN, Kracht T. Novopen Echo for the delivery of insulin: a comparison of usability, functionality and preference among pediatric subjects, their parents, and health care professionals. J Diabetes Sci Technol. 2010;4:1468–75.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Review EP. Novo Nordisk’s award-winning NovoPen 5 with easy-to-use memory function approved in China.

    Google Scholar 

  38. Bailey TS, Stone JY. A novel pen-based Bluetooth-enabled insulin delivery system with insulin dose tracking and advice. Expert Opin Drug Deliv. 2017;14:697–703.

    Article  CAS  PubMed  Google Scholar 

  39. Freed S. New smart pens hoped to change the way we treat diabetes. Diabetes Control. https://www.diabetesincontrol.com/new-smart-pens-hoped-to-change-the-waywe-treat-diabetes/. Accessed 13 Apr 2023.

  40. DiaTribeLearn. NovoPen 6 and NovoPen Echo Plus: connected insulin pens to launch in early 2019.

    Google Scholar 

  41. Sangave NA, Aungst TD, Patel DK. Smart connected insulin pens, caps, and attachments: a review of the future of diabetes technology. Diabetes Spectr. 2019;32:378–84.

    Article  PubMed  PubMed Central  Google Scholar 

  42. MedicalNewsToday. What are insulin pens and how do we use them?

    Google Scholar 

  43. Pearson TL. Practical aspects of insulin pen devices. J Diabetes Sci Technol. 2010;4:522–31.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Khan AM, Alswat KA. Benefits of using the i-port system on insulin-treated patients. Diabetes Spectr. 2019;32:30–5.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Burdick P, Cooper S, Horner B, Cobry E, McFann K, Chase HP. Use of a subcutaneous injection port to improve glycemic control in children with type 1 diabetes. Pediatr Diabetes. 2009;10:116–9.

    Article  PubMed  Google Scholar 

  46. Polonsky KS, Given BD, Hirsch L, Shapiro ET, Tillil H, Beebe C. Quantitative study of insulin secretion and clearance in normal and obese subjects. J Clin Invest. 1988;81:435–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maniatis AK, Klingensmith GJ, Slover RH, Mowry CJ, Chase HP. Continuous subcutaneous insulin infusion therapy for children and adolescents: an option for routine diabetes care. Pediatrics. 2001;107:351–6.

    Article  CAS  PubMed  Google Scholar 

  48. Medtronic. What is insulin pump therapy. Medtronic.

    Google Scholar 

  49. Al-Tabakha MM, Arida AI. Recent challenges in insulin delivery systems: a review. Indian J Pharm Sci. 2008;70:278–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Al Hayek AA, Robert AA, Babli S, Almonea K, Al Dawish MA. Fear of self-injecting and self-testing and the related risk factors in adolescents with type 1 diabetes: a cross-sectional study. Diabetes Ther. 2017;8:75–83.

    Article  PubMed  Google Scholar 

  51. Kadish AH. A servomechanism for blood sugar control. Biomed Sci Instrum. 1963;1:171–6.

    CAS  PubMed  Google Scholar 

  52. Allen N, Gupta A. Current diabetes technology: striving for the artificial pancreas. Diagnostics. 2019;9:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. SOOIL. SOOIL history. https://sooil.com/eng/about/history.php. Accessed 13 Apr 2023.

  54. Duckworth WC, Saudek CD, Henry RR. Why intraperitoneal delivery of insulin with implantable pumps in NIDDM? Diabetes. 1992;41:657–61.

    Article  CAS  PubMed  Google Scholar 

  55. Skyler JS, Ponder S, Kruger DF, Matheson D, Parkin CG. Is there a place for insulin pump therapy in your practice? Clin Diabetes. 2007;25:50–6.

    Article  Google Scholar 

  56. Magennis C The different types of insulin pumps available in 2019.

    Google Scholar 

  57. Medtronic. Innovation milestones Hieronymus Laura GS. Insulin delivery devices.

    Google Scholar 

  58. Hieronymus Laura GS. Insulin delivery devices.

    Google Scholar 

  59. Kesavadev J, Shankar A, Sadasrian Pillai PB, et al. CSII as an alternative therapeutic strategy for managing type 2 diabetes: adding the Indian experience to a global perspective. Curr Diabetes Rev. 2016;12:312–4.

    Article  CAS  PubMed  Google Scholar 

  60. Maiorino MI, Bellastella G, Casciano O, et al. The effects of subcutaneous insulin infusion versus multiple insulin injections on glucose variability in young adults with type 1 diabetes: the 2-year follow-up of the observational METRO study. Diabetes Technol Ther. 2018;20:117–26.

    Article  CAS  PubMed  Google Scholar 

  61. Heinemann L, Krinelke L. Insulin infusion set: the Achilles heel of continuous subcutaneous insulin infusion. J Diabetes Sci Technol. 2012;6:954–64.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Moser EG, Morris AA, Garg SK. Emerging diabetes therapies and technologies. Diabetes Res Clin Pract. 2012;97:16–26.

    Article  PubMed  Google Scholar 

  63. Heinemann L, Waldenmaier D, Kulzer B, Ziegler R, Ginsberg B, Freckmann G. Patch pumps: are they all the same? J Diabetes Sci Technol. 2019;13:34–40.

    Article  PubMed  Google Scholar 

  64. Ginsberg BH. Patch pumps for insulin. J Diabetes Sci Technol. 2019;13:27–33.

    Article  CAS  PubMed  Google Scholar 

  65. DiaTribeLearn. Insulet’s second generation omnipod patch pump approved by FDA.

    Google Scholar 

  66. Garcia-Verdugo R, Erbach M, Schnell O. A new optimized percutaneous access system for CIPII. J Diabetes Sci Technol. 2017;11:814–21.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gimenez M, Purkayajtha S, Moscardo V, Conget I, Oliver N. Intraperitoneal insulin therapy in patients with type 1 diabetes. Does it fit into the current therapeutic arsenal? Endocrinol Diabet Nutr. 2018;65(3):182–4.

    Article  Google Scholar 

  68. Garg SK, Voelmle MK, Beatson CR, Miller HA, Crew LB, Freson BJ, et al. Use of continuous glucose monitoring in subjects with type 1 diabetes on multiple daily injections versus continuous subcutaneous insulin infusion therapy: a prospective 6-month study. Diabetes Care. 2011;34:574–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Steineck I, Ranjan A, Nørgaard K, Schmidt S. Sensor-augmented insulin pumps and hypoglycemia prevention in type 1 diabetes. J Diabetes Sci Technol. 2017;11:50–8.

    Article  CAS  PubMed  Google Scholar 

  70. Matsuoka A, Hirota Y, Urai S, et al. Effect of switching from conventional continuous subcutaneous insulin infusion to sensor augmented pump therapy on glycemic profile in Japanese patients with type 1 diabetes. Diabetol Int. 2018;9:201–7.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Oviedo S, Contreras I, Bertachi A, et al. Minimizing postprandial hypoglycemia in type 1 diabetes patients using multiple insulin injections and capillary blood glucose self-monitoring with machine learning techniques. Comput Methods Prog Biomed. 2019;178:175–80.

    Article  Google Scholar 

  72. Medtronic. Innovation milestones.

    Google Scholar 

  73. Medtronic. Minimed TM 640G insulin pump system. Medtronic.

    Google Scholar 

  74. NIDDK.NIH: Story of discovery: artificial pancreas for managing type 1 diabetes: cutting-edge technology 50 years in the making. https://www.niddk.nih.gov/news/archive/2017/story-discovery-artificial-pancreas-managing-type1-diabetes. Accessed 13 Apr 2023.

  75. Biester T, Kordonouri O, Holder M. “Let the algorithm do the work”: reduction of hypoglycemia using sensor-augmented pump therapy with predictive insulin suspension (SmartGuard) in pediatric type 1 diabetes patients. Diabetes Technol Ther. 2017;19:173–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Garg SK, Weinzimer SA, Tamborlane WV, et al. Glucose outcomes with the in-home use of a hybrid closed-loop insulin delivery system in adolescents and adults with type 1 diabetes. Diabetes Technol Ther. 2017;19:155–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sharifi A, De Bock MI, Jayawardene D, et al. Glycemia, treatment satisfaction, cognition, and sleep quality in adults and adolescents with type 1 diabetes when using a closed-loop system overnight versus sensor-augmented pump with low-glucose suspend function: a randomized crossover study. Diabetes Technol Ther. 2016;18:772–83.

    Article  CAS  PubMed  Google Scholar 

  78. Brown SA, Kovatchev BP, Raghinaru D, et al. Six-month randomized, multicenter trial of closed-loop control in type 1 diabetes. N Engl J Med. 2019;381:1707–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Home Insulet. https://www.insulet.com/. Accessed13 Apr 2023.

  80. Shah VN, Shoskes A, Tawfik B, Garg SK. Closed-loop system in the management of diabetes: past, present, and future. Diabetes Technol Ther. 2014;16:477–90.

    Article  CAS  PubMed  Google Scholar 

  81. FDA. FDA authorizes first interoperable insulin pump intended to allow patients to customize treatment through their individual diabetes management devices. FDA.

    Google Scholar 

  82. Omer T. Empowered citizen ‘health hackers’ who are not waiting. BMC Med. 2016;14:118.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Marshall DC, Holloway M, Korer M, Woodman J, Brackenridge A, Hussain S. Do-it-yourself artificial pancreas systems in type 1 diabetes: perspectives of two adult users, a caregiver and three physicians. Diabetes Ther. 2019;10:1553–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. White K, Gebremariam A, Lewis D, et al. Motivations for participation in an online social media community for diabetes. J Diabetes Sci Technol. 2018;12:712–8.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lewis DM. Do-it-yourself artificial pancreas system and the OpenAPS movement. Endocrinol Metab Clin N Am. 2020;49:203–13.

    Article  Google Scholar 

  86. OPENAPS.ORG. OpenAPS Outcomes. OPENAPS. ORG. 2020.

    Google Scholar 

  87. Mine D. Homegrown closed loop technology: mom connects to RileyLink.

    Google Scholar 

  88. Lewis D, Leibrand S. Real-world use of open source artificial pancreas systems. J Diabetes Sci Technol. 2016;10:1411.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kesavadev J, Saboo B, Kar P, Sethi J. DIY artificial pancreas: a narrative of the first patient and the physicians’ experiences from India. Diabetes Metab Syndr Clin Res Rev. 2021;15(2):615–20.

    Article  CAS  Google Scholar 

  90. Kesavadev J, Srinivasan S, Saboo B, Krishna B, M. and Krishnan, G. The do-it-yourself artificial pancreas: a comprehensive review. Diabetes Therapy. 2020;11(6):1217–35.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bux Rodeman K, Hatipoglu B. Beta-cell therapies for type 1 diabetes: transplants and bionics. Cleve Clin J Med. 2018;85:931–7.

    Article  PubMed  Google Scholar 

  92. JDRF. FDA grants breakthrough device status: iLet bionic pancreas.

    Google Scholar 

  93. Idlebrook C. The diabetes dads behind 3 type 1 breakthroughs. Insulin Nation; 2015.

    Google Scholar 

  94. JDRF. FDA Grants breakthrough device status: iLet bionic pancreas. 2019.

    Google Scholar 

  95. Racklyeft N. The history of loop and LoopKit reflecting on the past in celebration of version 1.0. Medium.

    Google Scholar 

  96. Bevan A “Not Good Enough”: how one dad led the change in diabetes devices through grassroots research and collaboration.

    Google Scholar 

  97. Gavrila V, Garrity A, Hirschfeld E, Edwards B, Lee JM. Peer support through a diabetes social media community. J Diabetes Sci Technol. 2019;13:493–7.

    Article  PubMed  PubMed Central  Google Scholar 

  98. AAMI. Linkedin. Advancing safety in health technology. https://www.linkedin.com/company/aami_2. Accessed 13 Apr 2023.

  99. Glu. An interview with Tidepool CEO Howard Look. glu.

    Google Scholar 

  100. Snider C. Tidepool loop, one year in: a development update. Tidepool.

    Google Scholar 

  101. Huckvale K, Adomaviciute S, Prieto JT, Leow MK-S, Car J. Smartphone apps for calculating insulin dose: a systematic assessment. BMC Med. 2015;13:106.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Shashaj B, Busetto E, Sulli N. Benefits of a bolus calculator in pre- and postprandial glycaemic control and meal flexibility of paediatric patients using continuous subcutaneous insulin infusion (CSII). Diabet Med. 2008;25:1036–42.

    Article  CAS  PubMed  Google Scholar 

  103. Peters AL, Ahmann AJ, Battelino T, et al. Diabetes technology-continuous subcutaneous insulin infusion therapy and continuous glucose monitoring in adults: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016;101:3922–37.

    Article  CAS  PubMed  Google Scholar 

  104. Taylor MJ, Gregory R, Tomlins P, Jacob D, Hubble J, Sahota TS. Closed-loop glycaemic control using an implantable artificial pancreas in diabetic domestic pig (sus scrofa domesticus). Int J Pharm. 2016;500:371–8.

    Article  CAS  PubMed  Google Scholar 

  105. Peyser T, Dassau E, Breton M, Skyler JS. The artificial pancreas: current status and future prospects in the management of diabetes. Ann N Y Acad Sci. 2014;1311:102–23.

    Article  CAS  PubMed  Google Scholar 

  106. Gänsslen M. Über inhalation von insulin. Klin Wochenschr. 1925;4:71.

    Article  Google Scholar 

  107. Heinemann L. Alternative delivery routes: inhaled insulin. Diabetes Nutr Metab. 2002;15:417–22.

    CAS  PubMed  Google Scholar 

  108. Santos Cavaiola T, Edelman S. Inhaled insulin: a breath of fresh air? A review of inhaled insulin. Clin Ther. 2014;36:1275–89.

    Article  CAS  PubMed  Google Scholar 

  109. FDA Approved Drug Products.

    Google Scholar 

  110. Patton JS, Bukar JG, Eldon MA. Clinical pharmacokinetics and pharmacodynamics of inhaled insulin. Clin Pharmacokinet. 2004;43:781–801.

    Article  CAS  PubMed  Google Scholar 

  111. Alabraba V, Farnsworth A, Leigh R, Dodson P, Gough SC, Smyth T. Exubera inhaled insulin in patients with type 1 and type 2 diabetes: the first 12 months. Diabetes Technol Ther. 2009;11:427–30.

    Article  CAS  PubMed  Google Scholar 

  112. Flood T. Advances in insulin delivery systems and devices: beyond the vial and syringe. Insulin. 2006;1:99–108.

    Article  Google Scholar 

  113. Richardson PC, Boss AH. Technosphere insulin technology. Diabetes Technol Ther. 2007;9(Suppl 1):S65–72.

    Article  CAS  PubMed  Google Scholar 

  114. Neumiller JJ, Campbell RK, Wood LD. A review of inhaled technosphere insulin. Ann Pharmacother. 2010;44:1231–9.

    Article  CAS  PubMed  Google Scholar 

  115. Heinemann L, Baughman R, Boss A, Hompesch M. Pharmacokinetic and pharmacodynamic properties of a novel inhaled insulin. J Diabetes Sci Technol. 2017;11:148–56.

    Article  CAS  PubMed  Google Scholar 

  116. Oleck J, Kassam S, Goldman JD. Commentary: why was inhaled insulin a failure in the market? Diabetes Spectr. 2016;29:180–4.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Seaquist ER, Blonde L, McGill JB, et al. Hypoglycaemia is reduced with use of inhaled Technosphere((R)) insulin relative to insulin aspart in type 1 diabetes mellitus. Diabet Med. 2019;37(5):752–9.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Akturk HK, Snell-Bergeon JK, Rewers A, et al. Improved postprandial glucose with inhaled technosphere insulin compared with insulin aspart in patients with type 1 diabetes on multiple daily injections: the STAT study. Diabetes Technol Ther. 2018;20:639–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Papania MJ, Zehrung D, Jarrahian C. In: Plotkin SA, Orenstein WA, Offit PA, KMBT-PV E, Seventh E, editors. Technologies to improve immunization. Amsterdam: Elsevier; 2018. p. 1320.e17–53.e17.

    Google Scholar 

  120. Al-Tabakha M. Recent advances and future prospects of non-invasive insulin delivery systems. Int J Appl Pharm. 2019;11:16–24.

    Article  CAS  Google Scholar 

  121. Guo L, Xiao X, Sun X, Qi C. Comparison of jet injector and insulin pen in controlling plasma glucose and insulin concentrations in type 2 diabetic patients. Medicine. 2017;96:e5482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hu J, Shi H, Zhao C, et al. Lispro administered by the QS-M needle-free jet injector generates an earlier insulin exposure. Expert Opin Drug Deliv. 2016;13:1203–7.

    Article  CAS  PubMed  Google Scholar 

  123. Arbit E, Kidron M. Oral insulin: the rationale for this approach and current developments. J Diabetes Sci Technol. 2009;3:562–7.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Abdel-Moneim A, Ramadan H. Novel strategies to oral delivery of insulin. Current progress of noncarriers for diabetes management. Drug Des Dev. 2022;83:301–16.

    Google Scholar 

  125. Sonia TA, Sharma CP. An overview of natural polymers for oral insulin delivery. Drug Discov Today. 2012;17:784–92.

    Article  CAS  PubMed  Google Scholar 

  126. Ramesan RM, Sharma CP. Challenges and advances in nanoparticle-based oral insulin delivery. Expert Rev Med Dev. 2009;6:665–76.

    Article  CAS  Google Scholar 

  127. Damgé C, Reis CP, Maincent P. Nanoparticle strategies for the oral delivery of insulin. Expert Opin Drug Deliv. 2008;5:45–68.

    Article  PubMed  Google Scholar 

  128. Chaturvedi K, Ganguly K, Nadagouda MN, Aminabhavi TM. Polymeric hydrogels for oral insulin delivery. J Control Release. 2013;165:129–38.

    Article  CAS  PubMed  Google Scholar 

  129. Geho WB, Geho HC, Lau JR, Gana TJ. Hepatic-directed vesicle insulin: a review of formulation development and preclinical evaluation. J Diabetes Sci Technol. 2009;3:1451–9.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Heinemann L. New ways of insulin delivery. Int J Clin Pract Suppl. 2010;166:29–40.

    Article  Google Scholar 

  131. Maroni A, Zema L, Del Curto MD, Foppoli A, Gazzaniga A. Oral colon delivery of insulin with the aid of functional adjuvants. Adv Drug Deliv Rev. 2012;64:540–56.

    Article  CAS  PubMed  Google Scholar 

  132. Yaturu S. Insulin therapies: current and future trends at dawn. World J Diabetes. 2013;4:1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Salzman R, Manson JE, Griffing GT, Kimmerle R, Ruderman N, McCall A. Intranasal aerosolized insulin. Mixed-meal studies and long-term use in type I diabetes. N Engl J Med. 1985;312:1078–84.

    Article  CAS  PubMed  Google Scholar 

  134. Frauman AG, Cooper ME, Parsons BJ, Jerums G, Louis WJ. Long-term use of intranasal insulin in insulin-dependent diabetic patients. Diabetes Care. 1987;10:573–8.

    Article  CAS  PubMed  Google Scholar 

  135. Leary AC, Stote RM, Cussen K, O’Brien J, Leary WP, Buckley B. Pharmacokinetics and pharmacodynamics of intranasal insulin administered to patients with type 1 diabetes: a preliminary study. Diabetes Technol Ther. 2006;8:81–8.

    Article  CAS  PubMed  Google Scholar 

  136. Illum L. Nasal drug delivery — recent developments and future prospects. J Control Release. 2012;161:254–63.

    Article  CAS  PubMed  Google Scholar 

  137. Stote R, Marbury T, Shi L, Miller M, Strange P. Comparison pharmacokinetics of two concentrations (0.7% and 1.0%) of Nasulin, an ultra-rapid-acting intranasal insulin formulation. J Diabetes Sci Technol. 2010;4:603–9.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Benedict C, Frey WH 2nd, Schiöth HB, Schultes B, Born J, Hallschmid M. Intranasal insulin as a therapeutic option in the treatment of cognitive impairments. Exp Gerontol. 2011;46:112–5.

    Article  CAS  PubMed  Google Scholar 

  139. Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol. 2012;69:29–38.

    Article  PubMed  Google Scholar 

  140. Heinemann L, Jacques Y. Oral insulin and buccal insulin: a critical reappraisal. J Diabetes Sci Technol. 2009;3:568–84.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Kumria R, Goomber G. Emerging trends in insulin delivery: buccal route. J Diabetol. 2011;2:1–9.

    Google Scholar 

  142. World’s First Oral Insulin Spray Launched in India. Asia Pacific Biotech News. 2008;12:60.

    Google Scholar 

  143. Bala R, Pawar P, Khanna S, Arora S. Orally dissolving strips: a new approach to oral drug delivery system. Int J Pharm Investig. 2013;3:67–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26:1261–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kanikkannan N. Iontophoresis-based transdermal delivery systems. BioDrugs. 2002;16:339–47.

    Article  CAS  PubMed  Google Scholar 

  146. Rao R, Nanda S. Sonophoresis: recent advancements and future trends. J Pharm Pharmacol. 2009;61:689–705.

    Article  CAS  PubMed  Google Scholar 

  147. Andrews S, Lee JW, Choi SO, Prausnitz MR. Transdermal insulin delivery using microdermabrasion. Pharm Res. 2011;28:2110–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Charoo NA, Rahman Z, Repka MA, Murthy SN. Electroporation: an avenue for transdermal drug delivery. Curr Drug Deliv. 2010;7:125–36.

    Article  CAS  PubMed  Google Scholar 

  149. Malakar J, Sen SO, Nayak AK, Sen KK. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm J. 2012;20:355–63.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Freckmann G, Pleus S, Haug C, Bitton G, Nagar R. Increasing local blood flow by warming the application site: beneficial effects on postprandial glycemic excursions. J Diabetes Sci Technol. 2012;6:780–5.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Vaughn DE, Muchmore DB. Use of recombinant human hyaluronidase to accelerate rapid insulin analogue absorption: experience with subcutaneous injection and continuous infusion. Endocr Pract. 2011;17:914–21.

    Article  PubMed  Google Scholar 

  152. Bariya SH, Gohel MC, Mehta TA, Sharma OP. Microneedles: An emerging transdermal drug delivery system. J Pharm Pharmacol. 2012;64:11–29.

    Article  CAS  PubMed  Google Scholar 

  153. Morgan RV. Delivery of systemic regular insulin via the ocular route in cats. J Ocul Pharmacol Ther. 1995;11:565–73.

    Article  CAS  PubMed  Google Scholar 

  154. Ritschel WA, Ritschel GB, Ritschel BE, Lücker PW. Rectal delivery system for insulin. Methods Find Exp Clin Pharmacol. 1988;10:645–56.

    CAS  PubMed  Google Scholar 

  155. Yamasaki Y, Shichiri M, Kawamori R, Kikuchi M, Yagi T, Ara S, et al. The effectiveness of rectal administration of insulin suppository on normal and diabetic subjects. Diabetes Care. 1981;4:454–8.

    Article  CAS  PubMed  Google Scholar 

  156. Laqueur E, Grevenstuk A. Uber die wirkung intratrachealer zuführung von insulin. Klin Wochenschr. 1924;3:1273–4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kesavadev, J., Krishnan, G., Benny, N. (2023). Insulin Delivery: An Evolution in the Technology. In: Rodriguez-Saldana, J. (eds) The Diabetes Textbook. Springer, Cham. https://doi.org/10.1007/978-3-031-25519-9_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25519-9_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25518-2

  • Online ISBN: 978-3-031-25519-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics