Skip to main content

Diabetic Cardiac Autonomic Neuropathy

  • Chapter
  • First Online:
The Diabetes Textbook

Abstract

Cardiac autonomic neuropathy (CAN) is a serious and common complication of diabetes mellitus (DM). Despite its relationship to an increased risk of cardiovascular mortality and its association with multiple symptoms and impairments, the significance of CAN has not been fully appreciated. This chapter contains the review of the latest evidence and own data regarding the epidemiology, pathogenesis, clinical signs, diagnosis of CAN; treatment and the treatment perspectives for diabetic CAN. Lifestyle modification, intensive glycemic control might prevent development or progression of CAN. Pathogenetic treatment of CAN includes: optimization of glycemic control; balanced diet and physical activity; treatment of dyslipoproteinemia; correction of metabolic abnormalities in myocardium; prevention and treatment of thrombosis; use of aldose reductase inhibitors; angiotensin-converting enzyme inhibitors, prostaglandin analogs, acetyl-L-carnitine, antioxidants, first of all α-lipoic acid, use of ω-3 polyunsaturated fatty acids, vasodilators, fat-soluble vitamin B1, aminoguanidine; substitutive therapy of growth factors, in severe cases-, treatment of orthostatic hypotension.

The following chapter includes the epidemiology, pathogenesis, clinical impact, assessment, diagnosis and staging, diagnostic criteria, and approaches to prevention and treatment of CAN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABPM:

Ambulatory blood pressure monitoring

BP:

Blood pressure

BRS:

Baroreflex sensitivity

CAD:

Coronary artery disease

CAN:

Cardiac autonomic neuropathy

CARTs:

Cardiovascular autonomic reflex tests

CHD:

Coronary heart disease

CVD:

Cardiovascular diseases

DLP:

Dyslipidemia

DM:

Diabetes mellitus

GLP1-RA:

Glucagon-like peptide 1 receptor agonists

HR:

Heart rate

HRT:

Heart rate turbulence

HRV:

Heart rate variability

LV:

Left ventricular

MI:

Myocardial infarction

MSNA :

Muscle sympathetic nerve activity

OH:

Orthostatic hypotension

QTi:

QT interval

SGLT2i:

Sodium glucose transporter 2 inhibitors

SMI:

Silent myocardial ischemia

T1DM:

Type 1 diabetes mellitus

T2DM:

Type 2 diabetes mellitus

α-LA:

α-Lipoic acid

ω-3 PUFA:

ω-3 Polyunsaturated fatty acids

References

  1. American Diabetes Association. Standards of medical care in diabetes-2014. Diabetes Care. 2014;37(Suppl 1):14–80. https://doi.org/10.2337/dc14-S014.

    Article  Google Scholar 

  2. American Diabetes Association. Standards of medical care in diabetes-2016. Diabetes Care. 2016;39(Suppl 1):1–2. https://doi.org/10.2337/dc16-S001.

    Article  CAS  Google Scholar 

  3. International Diabetes Federation. IDF Diabetes Atlas. 7th ed. Brussels: International Diabetes Federation; 2015.

    Google Scholar 

  4. Rodriguez-Saldaña J. Preface: a new disease? In: Rodriguez-Saldaña J, editor. Diabetes textbook: clinical principles, patient management and public health issues. Basel: Springer; 2019; p. 1–8. https://link.springer.com/book/10.1007/978-3-030-11815-0.

  5. Kempler P, Tesfaye S, Chaturvedi N, Stevens LK, Webb DJ, Eaton S, et al. EURODIAB IDDM Complications Study Group. Autonomic neuropathy is associated with increased cardiovascular risk factors: the EURODIAB IDDM complications study. Diabet Med. 2002;19:900–9. https://doi.org/10.1046/j.1464-5491.2002.00821.x.

    Article  CAS  PubMed  Google Scholar 

  6. Wanders D, Plaisance EP, Judd RL. Pharmacological effects of lipid-lowering drugs on circulating adipokines. World J Diabetes. 2010;1:116–28. https://doi.org/10.4239/wjd.v1.i4.116.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Maser RE, Lenhard MJ. Cardiovascular autonomic neuropathy due to diabetes mellitus: clinical manifestations, consequences, and treatment. J Clin Endocrinol Metab. 2005;90:5896–903. https://doi.org/10.1210/jc.2005-0754.

    Article  CAS  PubMed  Google Scholar 

  8. Prince CT, Secrest AM, Mackey RH, Arena VC, Kingsley LA, Orchard TJ. Cardiovascular autonomic neuropathy, HDL cholesterol, and smoking correlate with arterial stiffness markers determined 18 years later in type 1 diabetes. Diabetes Care. 2010;33:652–7. https://doi.org/10.2337/dc09-1936.

    Article  CAS  PubMed  Google Scholar 

  9. Vinik AI, Casellini C, Parson HK, Colberg SR, Nevoret ML. Cardiac autonomic neuropathy in diabetes: a predictor of cardiometabolic events. Front Neurosci. 2018;12:591. https://doi.org/10.3389/fnins.2018.00591.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ziegler D, Zentai CP, Perz S, Rathmann W, Haastert B, Döring A, Meisinger C. Prediction of mortality using measures of cardiac autonomic dysfunction in the diabetic and nondiabetic population: the MONICA/KORA Augsburg cohort study. Diabetes Care. 2008;31:556–61. https://doi.org/10.2337/dc07-1615.

    Article  PubMed  Google Scholar 

  11. Tandon N, Ali MK, Narayan KM. Pharmacologic prevention of microvascular and macrovascular complications in diabetes mellitus: implications of the results of recent clinical trials in type 2 diabetes. Am J Cardiovasc Drugs. 2012;12:7–22. https://doi.org/10.2165/11594650-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  12. Vinik AI, Maser RE, Ziegler D. Autonomic imbalance: prophet of doom or scope for hope. Diabet Med. 2011;28:643–51. https://doi.org/10.1111/j.1464-5491.2010.03184.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anonymous. Assessment: clinical autonomic testing report of the therapeutics and technology assessment Subcommittee of the American Academy of Neurology. Neurology. 1996;46:873–80.

    Google Scholar 

  14. Spallone V. Update on the impact, diagnosis and management of cardiovascular autonomic neuropathy in diabetes: what is defined, what is new, and what is unmet. Diabetes Metab J. 2019;43:3–30. https://doi.org/10.4093/dmj.2018.0259.

    Article  PubMed  Google Scholar 

  15. Spallone V, Bellarvere F, Scionti L, Maule S, Quadri R, Bax G, et al. Recommendations for the use of cardiovascular tests in diagnosing diabetic autonomic neuropathy. Nutr Metab Cardiovasc Dis. 2011;21:69–78. https://doi.org/10.1016/j.numecd.2010.07.005.

    Article  CAS  PubMed  Google Scholar 

  16. Ko SH, Park SA, Cho JH, Song KH, Yoon KH, Cha BY, et al. Progression of cardiovascular autonomic dysfunction in patients with type 2 diabetes: a 7-year follow-up study. Diabetes Care. 2008;31:1832–6. https://doi.org/10.2337/dc08-0682.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rolim LC, de Souza JST, Dib SA. Tests for early diagnosis of cardiovascular autonomic neuropathy: critical analysis and relevance. Front Endocrinol (Lausanne). 2014;4:173. https://doi.org/10.3389/fendo.2013.00173.

    Article  Google Scholar 

  18. Bakkar NZ, Dwaib HS, Fares S, Eid AH, Al-Dhaheri Y, El-Yazbi AF. Cardiac autonomic neuropathy: a progressive consequence of chronic low-grade inflammation in type 2 diabetes and related metabolic disorders. Int J Mol Sci. 2020;21:9005. https://doi.org/10.3390/ijms21239005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Frontoni S, Di Bartolo P, Avogaro A, Bosi E, Paolisso G, Ceriello A. Glucose variability: an emerging target for the treatment of diabetes mellitus. Diabetes Res Clin Pract. 2013;102:86–95. https://doi.org/10.1016/j.diabres.2013.09.007.

    Article  CAS  PubMed  Google Scholar 

  20. Pop-Busui R. Cardiac autonomic neuropathy in diabetes. A clinical perspective. Diabetes Care. 2010;33:434–41. https://doi.org/10.2337/dc09-1294.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Albers JW, Pop-Busui R. Diabetic neuropathy: mechanisms, emerging treatments, and subtypes. Curr Neurol Neurosci Rep. 2014;14:473. https://doi.org/10.1007/s11910-014-0473-5.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Balcıoğlu AS, Müderrisoğlu H. Diabetes and cardiac autonomic neuropathy: clinical manifestations, cardiovascular consequences, diagnosis and treatment. World J Diabetes. 2015;6:80–91. https://doi.org/10.4239/wjd.v6.i1.80.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fisher VL, Tahrani AA. Cardiac autonomic neuropathy in patients with diabetes mellitus: current perspectives. Diabetes Metab Syndr Obes. 2017;10:419–34. https://doi.org/10.2147/DMSO.S129797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ozdemir M, Arslan U, Türkoğlu S, Balcioğlu S, Cengel A. Losartan improves heart rate variability and heart rate turbulence in heart failure due to ischemic cardiomyopathy. J Card Fail. 2007;13:812–7. https://doi.org/10.1016/j.cardfail.2007.08.002.

    Article  CAS  PubMed  Google Scholar 

  25. Kempler P, editor. Neuropathies. Nerve dysfunction of diabetic and other origin. Budapest: Springer; 1997.

    Google Scholar 

  26. Ewing DJ, Martyn CN, Young RJ, Clarke BF. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care. 1985;8:491–8. https://doi.org/10.2337/diacare.8.5.491.

    Article  CAS  PubMed  Google Scholar 

  27. Valensi P, Johnson NB, Maison-Blanche P, Extramania F, Motte G, Coumel P. Influence of cardiac autonomic neuropathy on heart rate dependence of ventricular repolarization in diabetic patients. Diabetes Care. 2002;25:918–23. https://doi.org/10.2337/diacare.25.5.918.

    Article  PubMed  Google Scholar 

  28. Low PA, Walsh JC, Huang CY, McLeod JC. The sympathetic nervous system in diabetic neuropathy. A clinical and pathological study. Brain. 1975;98:341–56. https://doi.org/10.1093/brain/98.3.341.

    Article  CAS  PubMed  Google Scholar 

  29. Low PA. Prevalence of orthostatic hypotension. Clin Auton Res. 2008;18:8–13. https://doi.org/10.1007/s10286-007-1001-3.

    Article  PubMed  Google Scholar 

  30. Vinik AI, Erbas T. Diabetic autonomic neuropathy. In: Buijs RM, Swaab DF, editors. Handbook of clinical neurology, vol. 117. Edinburgh: Elsevier; 2013. p. 279–94. https://doi.org/10.1016/B978-0-444-53491-0.00022-5.

    Chapter  Google Scholar 

  31. Vinik AI, Maser RE, Ziegler D. Neuropathy: the crystal ball for cardiovascular disease? Diabetes Care. 2010;33:1688–90. https://doi.org/10.2337/dc10-0745.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nagamachi S, Jinnouchi S, Kurose T, Ohnishi T, Flores LG 2nd, Nakahara H, et al. 123I-MIBG myocardial scintigraphy in diabetic patients: relationship with 201Tl uptake and cardiac autonomic function. Ann Nucl Med. 1998;12:323–31. https://doi.org/10.1007/BF03164921.

    Article  CAS  PubMed  Google Scholar 

  33. Ziegler D, Schatz H, Conrad F, Gries FA, Ulrich H, Reichel G. Effects of treatment with the antioxidant alpha-lipoic acid on cardiac autonomic neuropathy in NIDDM patients. A 4-month randomized controlled multicenter trial (DEKAN study). Diabetes Care. 1997;20:369–73. https://doi.org/10.2337/diacare.20.3.369.

    Article  CAS  PubMed  Google Scholar 

  34. Vinik AI, Erbas T, Casellini CM. Diabetic cardiac autonomic neuropathy, inflammation and cardiovascular disease. J Diabetes Investig. 2013;4:4–18. https://doi.org/10.1111/jdi.12042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pop-Busui R, Boulton AJ, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40:136–54. https://doi.org/10.2337/dc16-2042.

    Article  CAS  PubMed  Google Scholar 

  36. Valensi P, Extramiana F, Lange C, Cailleau M, Haggui A, Maison Blanche P, et al. Influence of blood glucose on heart rate and cardiac autonomic function. The DESIR study. Diabet Med. 2011;28:440–9. https://doi.org/10.1111/j.1464-5491.2010.03222.x.

    Article  CAS  PubMed  Google Scholar 

  37. Veglio M, Chinaglia A, Cavallo-Perin P. QT interval, cardiovascular risk factors and risk of death in diabetes. J Endocrinol Investig. 2004;27:175–81. https://doi.org/10.1007/BF03346265.

    Article  CAS  Google Scholar 

  38. Spallone V, Ziegler D, Freeman R, Bernardi L, Frontoni S, Pop-Busui R, et al. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev. 2011;27:639–53. https://doi.org/10.1002/dmrr.1239.

    Article  PubMed  Google Scholar 

  39. Hage FG, Iskandrian AE. Cardiovascular imaging in diabetes mellitus. J Nucl Cardiol. 2011;18:959–65. https://doi.org/10.1007/s12350-011-9431-7.

    Article  PubMed  Google Scholar 

  40. Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97. https://doi.org/10.1161/CIRCULATIONAHA.106.634949.

    Article  PubMed  Google Scholar 

  41. Vinik AI, Camacho PM, Davidson JA, Handelsman Y, Lando HM, Leddy AL, et al. Task force to develop an AACE position statement on autonomic testing. American Association of Clinical Endocrinologists and American College of endocrinology position statement on testing for autonomic and somatic nerve dysfunction. Endocr Pract. 2017;23:1472–8. https://doi.org/10.4158/EP-2017-0053.

    Article  PubMed  Google Scholar 

  42. Santini V, Ciampittiello G, Gigli F, Bracaglia D, Baroni A, Cocconetti E, et al. QTc and autonomic neuropathy in diabetes: effects of acute hyperglycaemia and n-3 PUFA. Nutr Metab Cardiovasc Dis. 2007;17:712–8. https://doi.org/10.1016/j.numecd.2006.09.006.

    Article  CAS  PubMed  Google Scholar 

  43. Rosengård-Bärlund M, Bernardi L, Fagerudd J, Mäntysaari M, Af Björkesten CG, Lindholm H, et al. FinnDiane Study Group. Early autonomic dysfunction in type 1 diabetes: a reversible disorder? Diabetologia. 2009;52:1164–72. https://doi.org/10.1007/s00125-009-1340-9.

    Article  PubMed  Google Scholar 

  44. Desouza CV, Bolli GB, Fonseca V. Hypoglycemia, diabetes, and cardiovascular events. Diabetes Care. 2010;33:1389–94. https://doi.org/10.2337/dc09-2082.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Benichou T, Pereira B, Mermillod M, Tauveron I, Pfabigan D, Maqdasy S, et al. Heart rate variability in type 2 diabetes mellitus: a systematic review and meta-analysis. PLoS One. 2018;13:e0195166. https://doi.org/10.1371/journal.pone.0195166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sessa F, Anna V, Messina G, Cibelli G, Monda V, Marsala G, et al. Heart rate variability as predictive factor for sudden cardiac death. Aging (Albany NY). 2018;10:166–77. https://doi.org/10.18632/aging.101386.

    Article  PubMed  Google Scholar 

  47. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, et al. 2007 ESH-ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2007;25:1105–87. https://doi.org/10.1097/HJH.0b013e3281fc975a.

    Article  CAS  PubMed  Google Scholar 

  48. Wackers FJ, Young LH, Inzucchi SE, Chyun DA, Davey JA, Barrett EJ, et al. Detection of silent myocardial ischemia in asymptomatic diabetic subjects: the DIAD study. Diabetes Care. 2004;27:1954–61. https://doi.org/10.2337/diacare.27.8.1954.

    Article  PubMed  Google Scholar 

  49. Burgos LG, Ebert TJ, Assiddao C, Turner LA, Pattison CZ, Wang-Cheng R, et al. Increased intraoperative cardiovascular morbidity in diabetics with autonomic neuropathy. Anesthesiology. 1989;70:591–7. https://doi.org/10.1097/00000542-198904000-00006.

    Article  CAS  PubMed  Google Scholar 

  50. Bernardi L, Spallone V, Stevens M, Hilsted J, Frontoni S, Pop-Busui R, et al. Methods of investigation for cardiac autonomic dysfunction in human research studies. Diabetes Metab Res Rev. 2011;27:654–64. https://doi.org/10.1002/dmrr.1224.

    Article  PubMed  Google Scholar 

  51. Mogensen UM, Jensen T, Kober L, Kelbaek H, Mathiesen AS, Dixen P, et al. Cardiovascular autonomic neuropathy and subclinical cardiovascular disease in normoalbuminuric Type 1 diabetic patients. Diabetes. 2012;61:1822–30. https://doi.org/10.2337/db11-1235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shakespeare CF, Katritsis D, Crowther A, Cooper IC, Coltart JD, Webb-Peploe MV. Differences in autonomic nerve function in patients with silent and symptomatic myocardial ischaemia. Br Heart J. 1994;71:22–9. https://doi.org/10.1136/hrt.71.1.22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bauer A, Malik M, Schmidt G, Barthel P, Bonnemeier H, Cygankiewicz I, et al. Heart rate turbulence: standards of measurement, physiological interpretation, and clinical use: International Society for Holter and Noninvasive Electrophysiology Consensus. J Am Coll Cardiol. 2008;52:1353–65. https://doi.org/10.1016/j.jacc.2008.07.041.

    Article  PubMed  Google Scholar 

  54. Serhiyenko VA, Serhiyenko AA. Cardiac autonomic neuropathy: risk factors, diagnosis and treatment. World J Diabetes. 2018;9:1–24. https://doi.org/10.4239/wjd.v9.i1.1.

    Article  PubMed  PubMed Central  Google Scholar 

  55. La Rovere MT, Pinna GD, Maestri R, Robbi E, Caporotondi A, Guazzotti G, et al. Prognostic implications of baroreflex sensitivity in heart failure patients in the beta-blocking era. J Am Coll Cardiol. 2009;53:193–9. https://doi.org/10.1016/j.jacc.2008.09.034.

    Article  PubMed  Google Scholar 

  56. Cseh D, Climie RE, Offredo L, Guibout C, Thomas F, Zanoli L, et al. Type 2 diabetes mellitus is independently associated with decreased neural baroreflex sensitivity: the Paris prospective study III. Arterioscler Thromb Vasc Biol. 2020;40:1420–8. https://doi.org/10.1161/ATVBAHA.120.314102.

    Article  CAS  PubMed  Google Scholar 

  57. Hoffman RP, Sinkey CA, Anderson EA. Microneurographically determined muscle sympathetic nerve activity levels are reproducible in insulin-dependent diabetes mellitus. J Diabetes Complicat. 1998;12:307–10. https://doi.org/10.1016/S1056-8727(98)00010-5.

    Article  CAS  Google Scholar 

  58. Hilsted J. Catecholamines and diabetic autonomic neuropathy. Diabet Med. 1995;12:296–7. https://doi.org/10.1111/j.1464-5491.1995.tb00479.x.

    Article  CAS  PubMed  Google Scholar 

  59. González-Ortiz M, Martínez-Abundis E, Robles-Cervantes JA, Ramírez-Ramírez V, Ramos-Zavala MG. Effect of thiamine administration on metabolic profile, cytokines and inflammatory markers in drug-naïve patients with type 2 diabetes. Eur J Nutr. 2011;50:145–9. https://doi.org/10.1007/s00394-010-0123-x.

    Article  CAS  PubMed  Google Scholar 

  60. Schemmel KE, Padiyara RS, D’Souza JJ. Aldose reductase inhibitors in the treatment of diabetic peripheral neuropathy: a review. J Diabetes Complicat. 2010;24:354–60. https://doi.org/10.1016/j.jdiacomp.2009.07.005.

    Article  Google Scholar 

  61. DeGrado TR, Hutchins GD, Toorongian SA, Wieland DM, Schwaiger M. Myocardial kinetics of carbon-11-meta-hydroxyephedrine (HED): retention mechanisms and effects of norepinephrine. J Nucl Med. 1993;34:1287–93.

    CAS  PubMed  Google Scholar 

  62. Allman KC, Stevens MJ, Wieland DM, Hutchins GD, Wolfe ER Jr, Greene DA, Schwaiger M. Noninvasive assessment of cardiac diabetic neuropathy by C-11 hydroxyephedrine and positron emission tomography. J Am Coll Cardiol. 1993;22:1425–32. https://doi.org/10.1016/0735-1097(93)90553-D.

    Article  CAS  PubMed  Google Scholar 

  63. Stevens MJ, Dayanikli F, Raffel DM, Allman KC, Sandford T, Feldman EL, et al. Scintigraphic assessment of regionalized defects in myocardial sympathetic innervation and blood flow regulation in diabetic patients with autonomic neuropathy. J Am Coll Cardiol. 1998;31:1575–84. https://doi.org/10.1016/S0735-1097(98)00128-4.

    Article  CAS  PubMed  Google Scholar 

  64. Freeman MR, Newman D, Dorian P, Barr A, Langer A. Relation of direct assessment of cardiac autonomic function with metaiodobenzylguanidine imaging to heart rate variability in diabetes mellitus. Am J Cardiol. 1987;80:247–50. https://doi.org/10.1016/S0002-9149(97)00337-8.

    Article  Google Scholar 

  65. Schnell O, Muhr D, Weiss M, Dresel S, Haslbeck M, Standl E. Reduced myocardial 123I-metaiodobenzylguanidine uptake in newly diagnosed IDDM patients. Diabetes. 1996;45:801–5. https://doi.org/10.2337/diab.45.6.801.

    Article  CAS  PubMed  Google Scholar 

  66. Boulton AJ, Vinik AI, Arezzo JC, Bril V, Feldman EL, Freeman R, et al. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28:956–62. https://doi.org/10.2337/diacare.28.4.956.

    Article  PubMed  Google Scholar 

  67. Ziegler D. Can diabetic polyneuropathy be successfully treated? MMW Fortschr Med. 2010;152:64–8. https://doi.org/10.1007/BF03366224.

    Article  PubMed  Google Scholar 

  68. Dimitropoulos G, Tahrani AA, Stevens MJ. Cardiac autonomic neuropathy in patients with diabetes mellitus. World J Diabetes. 2014;6:245–58. https://doi.org/10.4239/wjd.v5.i1.17.

    Article  Google Scholar 

  69. Soares-Miranda L, Sandercock G, Vale S, Santos R, Abreu S, Moreira C, Mota J. Metabolic syndrome, physical activity and cardiac autonomic function. Diabetes Metab Res Rev. 2012;28:363–9. https://doi.org/10.1002/dmrr.2281.

    Article  CAS  PubMed  Google Scholar 

  70. Vincent AM, Calabek B, Roberts L, Feldman EL. Biology of diabetic neuropathy. Handb Clin Neurol. 2013;115:591–606. https://doi.org/10.1016/B978-0-444-52902-2.00034-5.

    Article  PubMed  Google Scholar 

  71. Valensi P, Pariès J, Attali JR. French Group for Research and Study of diabetic neuropathy. Cardiac autonomic neuropathy in diabetic patients: influence of diabetes duration, obesity, and microangiopathic complications—the French multicenter study. Metabolism. 2003;52:815–20. https://doi.org/10.1016/S0026-0495(03)00095-7.

    Article  CAS  PubMed  Google Scholar 

  72. Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358:580–91. https://doi.org/10.1056/NEJMoa0706245.

    Article  CAS  PubMed  Google Scholar 

  73. Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL. Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol. 2012;11:521–34. https://doi.org/10.1016/S1474-4422(12)70065-0.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Shin S, Kim KJ, Chang HJ, Lee BW, Yang WI, Cha BS, et al. The effect of oral prostaglandin analogue on painful diabetic neuropathy: a double-blind, randomized, controlled trial. Diabetes Obes Metab. 2013;15:185–8. https://doi.org/10.1111/dom.12010.

    Article  CAS  PubMed  Google Scholar 

  75. Derosa G, Limas CP, Macías PC, Estrella A, Maffioli P. Dietary and nutraceutical approach to type 2 diabetes. Arch Med Sci. 2014;10:336–44. https://doi.org/10.5114/aoms.2014.42587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sytze Van Dam P, Cotter MA, Bravenboer B, Cameron NE. Pathogenesis of diabetic neuropathy: focus on neurovascular mechanisms. Eur J Pharmacol. 2013;719:180–6. https://doi.org/10.1016/j.ejphar.2013.07.017.

    Article  CAS  PubMed  Google Scholar 

  77. AIM-HIGH Investigators. The role of niacin in raising high-density lipoprotein cholesterol to reduce cardiovascular events in patients with atherosclerotic cardiovascular disease and optimally treated low-density lipoprotein cholesterol: baseline characteristics of study participants. The Atherothrombosis Intervention in Metabolic syndrome with low HDL/high triglycerides: impact on Global Health outcomes (AIM-HIGH) trial. Am Heart J. 2011;161:538–43. https://doi.org/10.1016/j.ahj.2010.12.007.

    Article  CAS  Google Scholar 

  78. Ascaso JF. Advances in cholesterol-lowering interventions. Endocrinol Nutr. 2010;57:210–9. https://doi.org/10.1016/j.endonu.2010.03.008.

    Article  CAS  PubMed  Google Scholar 

  79. Serhiyenko VA, Serhiyenko LM, Serhiyenko AA. Omega-3 polyunsaturated fatty acids in the treatment of diabetic cardiovascular autonomic neuropathy: a review. In: Moore SJ, editor. Omega-3: dietary sources, biochemistry and impact on human health. New York: Nova Science Publishers; 2017. p. 79–154.

    Google Scholar 

  80. Blum A, Shamburek R. The pleiotropic effects of statins on endothelial function, vascular inflammation, immunomodulation and thrombogenesis. Atherosclerosis. 2009;203:325–30. https://doi.org/10.1016/j.atherosclerosis.2008.08.022.

    Article  CAS  PubMed  Google Scholar 

  81. Fleg JL, Mete M, Howard BV, Umans JG, Roman MJ, Ratner RE, et al. Effect of statins alone versus statins plus ezetimibe on carotid atherosclerosis in type 2 diabetes: the SANDS (Stop Atherosclerosis in Native Diabetics Study) trial. J Am Coll Cardiol. 2008;52:2198–205. https://doi.org/10.1016/j.jacc.2008.10.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tesfaye S, Selvarajah D. Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Diabetes Metab Res Rev. 2012;28:8–14. https://doi.org/10.1002/dmrr.2239.

    Article  PubMed  Google Scholar 

  83. Belfort R, Berria R, Cornell J, Cusi K. Fenofibrate reduces systemic inflammation markers independent of its effects on lipid and glucose metabolism in patients with the metabolic syndrome. J Clin Endocrinol Metab. 2010;95:829–36. https://doi.org/10.1210/jc.2009-1487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Staels B. A review of bile acid sequestrants: potential mechanism(s) for glucose-lowering effects in type 2 diabetes mellitus. Postgrad Med. 2009;121:25–30. https://doi.org/10.3810/pgm.2009.05.suppl53.290.

    Article  PubMed  Google Scholar 

  85. Bosch J, Gerstein HC, Dagenais GR, Díaz R, Dyal L, Jung H, et al. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N Engl J Med. 2012;367:309–18. https://doi.org/10.1056/NEJMoa1203859.

    Article  CAS  PubMed  Google Scholar 

  86. De Roos B, Mavrommatis Y, Brouwer IA. Long-chain n-3 polyunsaturated fatty acids: new insights into mechanisms relating to inflammation and coronary heart disease. Br J Pharmacol. 2009;158:413–28. https://doi.org/10.1111/j.1476-5381.2009.00189.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ebbesson SO, Devereux RB, Cole S, Ebbesson LO, Fabsitz RR, Haack K, et al. Heart rate is associated with red blood cell fatty acid concentration: the Genetics of Coronary Artery Disease in Alaska Natives (GOCADAN) study. Am Heart J. 2010;159:1020–5. https://doi.org/10.1016/j.ahj.2010.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jeppesen C, Schiller K, Schulze MB. Omega-3 and omega-6 fatty acids and type 2 diabetes. Curr Diab Rep. 2013;13:279–88. https://doi.org/10.1007/s11892-012-0362-8.

    Article  CAS  PubMed  Google Scholar 

  89. Kandasamy N, Joseph F, Goenka N. The role of omega-3 fatty acids in cardiovascular disease, hypertriglyceridaemia and diabetes mellitus. Br J Diabetes Vasc Dis. 2008;8:121–8. https://doi.org/10.1177/14746514080080030301.

    Article  CAS  Google Scholar 

  90. Tomassini JE, Mazzone T, Goldberg RB, Guyton JR, Weinstock RS, Polis A, et al. Effect of ezetimibe/simvastatin compared with atorvastatin on lipoprotein subclasses in patients with type 2 diabetes and hypercholesterolaemia. Diabetes Obes Metab. 2009;11:855–64. https://doi.org/10.1111/j.1463-1326.2009.01061.x.

    Article  CAS  PubMed  Google Scholar 

  91. Witteles RM, Fowler MB. Insulin-resistant cardiomyopathy clinical evidence, mechanisms, and treatment options. J Am Coll Cardiol. 2008;51:93–102. https://doi.org/10.1016/j.jacc.2007.10.021.

    Article  CAS  PubMed  Google Scholar 

  92. Fragasso G, Palloshi A, Puccetti P, Silipigni C, Rossodivita A, Pala M, et al. A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor, in patients with heart failure. J Am Coll Cardiol. 2006;48:992–8. https://doi.org/10.1016/j.jacc.2006.03.060.

    Article  CAS  PubMed  Google Scholar 

  93. Lee L, Campbell R, Scheuermann-Freestone M, Taylor R, Gunaruwan P, Williams L, et al. Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation. 2005;112:3280–8. https://doi.org/10.1161/CIRCULATIONAHA.105.551457.

    Article  CAS  PubMed  Google Scholar 

  94. Morrow DA, Scirica BM, Karwatowska-Prokopczuk E, Murphy SA, Budaj A, Varshavsky S, et al. Effects of ranolazine on recurrent cardiovascular events in patients with non-ST-elevation acute coronary syndromes: the MERLIN-TIMI 36 randomized trial. JAMA. 2007;297:1775–83. https://doi.org/10.1001/jama.297.16.1775.

    Article  CAS  PubMed  Google Scholar 

  95. Tesfaye S, Boulton AJM, Dyck PJ, Freeman R, Horowitz M, Kempler P, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33:2285–93. https://doi.org/10.2337/dc10-1303.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Orchard TJ, LLoyd CE, Maser RE, Kuller LH. Why does diabetic autonomic neuropathy predict IDDM mortality? An analysis from the Pittsburgh epidemiology of diabetes complications study. Diabetes Res Clin Pract. 1996;34:165–71. https://doi.org/10.1016/S0168-8227(96)90025-X.

    Article  Google Scholar 

  97. Rhee SY, Kim YS, Chon S, Oh S, Woo JT, Kim SW, et al. Long-term effects of cilostazol on the prevention of macrovascular disease in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2011;91:11–4. https://doi.org/10.1016/j.diabres.2010.09.009.

    Article  CAS  Google Scholar 

  98. Dhule SS, Gawali SR. Platelet aggregation and clotting time in type II diabetic males. Natl J Physiol Pharm Pharmacol. 2014;4:121–3. https://doi.org/10.5455/njppp.2014.4.290920131.

    Article  Google Scholar 

  99. Pop-Busui R, Evans GW, Gerstein HC, Fonseca V, Fleg JL, Hoogwerf BJ, et al. Effects of cardiac autonomic dysfunction on mortality risk in the action to control cardiovascular risk in diabetes (ACCORD) trial. Diabetes Care. 2010;33:1578–84. https://doi.org/10.2337/dc10-0125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Csányi G, Miller FJ. Oxidative stress in cardiovascular disease. Int J Mol Sci. 2014;15:6002–8. https://doi.org/10.3390/ijms15046002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mallet ML, Hadjivassiliou M, Sarrigiannis PG, Zis P. The role of oxidative stress in peripheral neuropathy. J Mol Neurosci. 2020;70:1009–17. https://doi.org/10.1007/s12031-020-01495-x.

    Article  CAS  PubMed  Google Scholar 

  102. Ibrahimpasic K. Alpha lipoic acid and glycaemic control in diabetic neuropathies at type 2 diabetes treatment. Med Arch. 2013;67:7–9. https://doi.org/10.5455/medarh.2013.67.7-9.

    Article  PubMed  Google Scholar 

  103. Adaikalakoteswari A, Rabbani N, Waspadji S, Tjokroprawiro A, Kariadi SH, Adam JM, Thornalley PJ. Disturbance of B-vitamin status in people with type 2 diabetes in Indonesia-link to renal status, glycemic control and vascular inflammation. Diabetes Res Clin Pract. 2012;95:415–24. https://doi.org/10.1016/j.diabres.2011.10.042.

    Article  CAS  PubMed  Google Scholar 

  104. Stracke H, Gaus W, Achenbach U, Federlin K, Bretzel RG. Benfotiamine in diabetic polyneuropathy (BENDIP): results of a randomised, double blind, placebo-controlled clinical study. Exp Clin Endocrinol Diabetes. 2008;116:600–5. https://doi.org/10.1055/s-2008-1065351.

    Article  CAS  PubMed  Google Scholar 

  105. Serhiyenko VA, Serhiyenko LM, Serhiyenko AA. Recent advances in the treatment of neuropathies in type 2 diabetes mellitus patients: focus on benfotiamine (review and own data). In: Berhardt LV, editor. Advances in medicine and biology (numbered series), vol. 166. New York: Nova Science Publishers; 2020. p. 1–80.

    Google Scholar 

  106. Haupt E, Ledermann H, Köpcke W. Benfotiamine in the treatment of diabetic polyneuropathy-a three-week randomized, controlled pilot study (BEDIP study). Int J Clin Pharmacol Ther. 2005;43:71–7. https://doi.org/10.5414/CPP43071.

    Article  CAS  PubMed  Google Scholar 

  107. Moss CJ, Mathews ST. Thiamin status and supplementation in the management of diabetes mellitus and its vascular comorbidities. Vitam Miner. 2013;2:111. https://doi.org/10.4172/vms.1000111.

    Article  CAS  Google Scholar 

  108. Power RA, Hulver MW, Zhang JY, Dubois J, Marchand RM, Ilkayeva O, et al. Carnitine revisited: potential use as adjunctive treatment in diabetes. Diabetologia. 2007;50:824–32. https://doi.org/10.1007/s00125-007-0605-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Solfrizzi V, Capurso C, Colacicco AM, D’Introno A, Fontana C, Capurso SA, et al. Efficacy and tolerability of combined treatment with L-carnitine and simvastatin in lowering lipoprotein(a) serum levels in patients with type 2 diabetes mellitus. Atherosclerosis. 2006;188:455–61. https://doi.org/10.1016/j.atherosclerosis.2005.11.024.

    Article  CAS  PubMed  Google Scholar 

  110. Bang HO, Dyerberg J. The bleeding tendency in Greenland Eskimos. Dan Med Bull. 1980;27:202–5.

    CAS  PubMed  Google Scholar 

  111. Harris WS. Omega-3 fatty acids and cardiovascular disease: a case for omega-3 index as a new risk factor. Pharmacol Res. 2007;55:217–23. https://doi.org/10.1016/j.phrs.2007.01.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Freeman R. Clinical practice. Neurogenic orthostatic hypotension. N Engl J Med. 2008;358:615–24. https://doi.org/10.1056/NEJMcp074189.

    Article  CAS  PubMed  Google Scholar 

  113. Lahrmann H, Cortelli P, Hilz M, Mathias CJ, Struhal W, Tassinari M. EFNS guidelines on the diagnosis and management of orthostatic hypotension. Eur J Neurol. 2006;13:930–6. https://doi.org/10.1111/j.1468-1331.2006.01512.x.

    Article  CAS  PubMed  Google Scholar 

  114. Rahman A, Fujisawa Y, Nakano D, Hitomi H, Nishiyama A. Effect of a selective SGLT2 inhibitor, luseogliflozin, on circadian rhythm of sympathetic nervous function and locomotor activities in metabolic syndrome rats. Clin Exp Pharmacol Physiol. 2017;44:522–5. https://doi.org/10.1111/1440-1681.12725.

    Article  CAS  PubMed  Google Scholar 

  115. Valensi P, Chiheb S, Fysekidis M. Insulin- and glucagon-like peptide-1-induced changes in heart rate and vagosympathetic activity: why they matter. Diabetologia. 2013;56:1196–200. https://doi.org/10.1007/s00125-013-2909-x.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Glossary

Cardiac autonomic neuropathy

Cardiac autonomic neuropathy chronic complication of diabetes mellitus is defined as the impairment of autonomic control of the cardiovascular system in the setting of diabetes after exclusion of other causes and is usually documented by using several cardiovascular autonomic reflex tests.

Cardiovascular autonomic reflex tests

Cardiovascular autonomic reflex tests these tests are considered the gold standard in autonomic testing. Heart rate variations during deep breathing, Valsalva maneuver, and lying-to-standing (HR tests) are indices mainly of parasympathetic function; whereas the orthostatic hypotension, the blood pressure response to a Valsalva maneuver, and sustained isometric muscular strain provide indices of sympathetic function.

Orthostatic hypotension

Orthostatic hypotension is defined as a fall in BP (i.e., >20 mmHg or more stringent criteria is >30 mmHg for systolic or >10 mmHg for diastolic BP) in response to postural change, from supine to standing.

Non-dipping status

Non-dipping status a fall in average sleeping blood pressure <10% from baseline.

Reverse dipping

Reverse dipping nocturnal hypertension.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Serhiyenko, V., Serhiyenko, A. (2023). Diabetic Cardiac Autonomic Neuropathy. In: Rodriguez-Saldana, J. (eds) The Diabetes Textbook. Springer, Cham. https://doi.org/10.1007/978-3-031-25519-9_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25519-9_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25518-2

  • Online ISBN: 978-3-031-25519-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics