Skip to main content

Peripheral Arterial Disease and Diabetes Mellitus

  • Chapter
  • First Online:
The Diabetes Textbook

Abstract

Peripheral arterial disease (PAD) is the partial or total occlusion of peripheral arteries and is usually due to atherosclerotic disease. While it can be diagnosed in a variety of ways, it is objectively most commonly defined as an ankle brachial index <0.9. It results in a spectrum of manifestations ranging from asymptomatic disease, intermittent claudication, rest pain, and tissue loss to gangrene. Furthermore, the presence of PAD is a coronary artery disease equivalent and puts patients at risk for cardiovascular and cerebrovascular complications and mortality. Diabetes is a primary risk factor for PAD. The severity and progression of PAD are accelerated when associated with diabetes. Patients with diabetes are among those most vulnerable to developing PAD, and they suffer the most complications and worst outcomes, making early detection and risk factor modification paramount in their treatment.

This chapter received no specific grant support from any funding agency in the public, commercial, or not-for-profit sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Delaimy WK, et al. Effect of type 2 diabetes and its duration on the risk of peripheral arterial disease among men. Am J Med. 2004;116(4):236–40.

    Article  PubMed  Google Scholar 

  2. Adler AI, et al. UKPDS 59: hyperglycemia and other potentially modifiable risk factors for peripheral vascular disease in type 2 diabetes. Diabetes Care. 2002;25(5):894–9.

    Article  PubMed  Google Scholar 

  3. González-Clemente JM, et al. Cardiovascular risk factor management is poorer in diabetic patients with undiagnosed peripheral arterial disease than in those with known coronary heart disease or cerebrovascular disease. Results of a nationwide study in tertiary diabetes centres. Diabet Med. 2008;25(4):427–34.

    Article  PubMed  Google Scholar 

  4. Selvin E, et al. Prevalence of and risk factors for peripheral arterial disease in the United States: results from the National Health and Nutrition Examination Survey, 1999–2000. Circulation. 2004;110(6):738–43.

    Article  PubMed  Google Scholar 

  5. Gerhard-Herman MD, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral arterial disease: executive summary. Circulation. 2016;135(12):e686–725.

    PubMed  PubMed Central  Google Scholar 

  6. Resnick HE, et al. Relationship of high and low ankle brachial index to all-cause and cardiovascular disease mortality. Circulation. 2004;109(6):733–9.

    Article  PubMed  Google Scholar 

  7. Nam SC, et al. Factors affecting the validity of ankle-brachial index in the diagnosis of peripheral arterial obstructive disease. Angiology. 2010;61(4):392–6.

    Article  PubMed  Google Scholar 

  8. Potier L, et al. Use and utility of ankle brachial index in patients with diabetes. Eur J Vasc Endovasc Surg. 2010;41(1):110–6.

    Article  PubMed  Google Scholar 

  9. Klonizakis M, et al. Effect of diabetes on the cutaneous microcirculation of the feet in patients with intermittent claudication. Clin Hemorheol Microcirc. 2015;61(3):439–44.

    Article  CAS  PubMed  Google Scholar 

  10. Young MJ, et al. Medial arterial calcification in the feet of diabetic patients and matched non-diabetic control subjects. Diabetologia. 1993;36(7):615–21.

    Article  CAS  PubMed  Google Scholar 

  11. Brooks B, et al. TBI or not TBI: that is the question. Is it better to measure toe pressure than ankle pressure in diabetic patients? Diabet Med. 2001;18(7):528–32.

    Article  CAS  PubMed  Google Scholar 

  12. Høyer C. The toe-brachial index in the diagnosis of peripheral arterial disease. J Vasc Surg. 2013;58(1):231–8.

    Article  PubMed  Google Scholar 

  13. Sonter JA. The predictive capacity of toe blood pressure and the toe brachial index for foot wound healing and amputation: a systematic review and meta-analysis. Wound Pract Res. 2014;22(4):208–20.

    Google Scholar 

  14. Tehan PE, et al. Non-invasive vascular assessment in the foot with diabetes: sensitivity and specificity of the ankle brachial index, toe brachial index and continuous wave Doppler for detecting peripheral arterial disease. J Diabetes Complications. 2015;30(1):155–60.

    Article  PubMed  Google Scholar 

  15. du Ro H, et al. Photoplethysmography and continuous-wave doppler ultrasound as a complementary test to ankle-brachial index in detection of stenotic peripheral arterial disease. Angiology. 2012;64(4):314–20.

    Article  PubMed  Google Scholar 

  16. Sharafuddin MJ, Marjan AE. Current status of carbon dioxide angiography. J Vasc Surg. 2017;66(2):618–37.

    Article  PubMed  Google Scholar 

  17. Paneni F, et al. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013;34(31):2436–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davis WA, et al. Predictors, consequences and cost of diabetes-related lower extremity amputation complicating type 2 diabetes: The fremantle diabetes study. Diabetologia. 2006;49(11):2634–41.

    Article  CAS  PubMed  Google Scholar 

  19. Faglia E, et al. Incidence of critical limb ischemia and amputation outcome in contralateral limb in diabetic patients hospitalized for unilateral critical limb ischemia during 1999–2003 and followed-up until 2005. Diabetes Res Clin Pract. 2007;77(3):445–50.

    Article  PubMed  Google Scholar 

  20. Aquino R, et al. Natural history of claudication: long-term serial follow-up study of 1244 claudicants. J Vasc Surg. 2001;34(6):962–70.

    Article  CAS  PubMed  Google Scholar 

  21. Jude EB, et al. Peripheral arterial disease in diabetic and nondiabetic patients. A comparison of severity and outcome. Diabetes Care. 2001;24(8):1433–7.

    Article  CAS  PubMed  Google Scholar 

  22. Mueller T, Hinterreiter F, Poelz W, Haltmayer M, Dieplinger B. Mortality rates at 10 years are higher in diabetic than in non-diabetic patients with chronic lower extremity peripheral arterial disease. Vasc Med. 2016;21(5):445–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Icks A, et al. Time-dependent impact of diabetes on mortality in patients after major lower extremity amputation. Diabetes Care. 2011;34(6):1350–4.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang Y, et al. Glycosylated hemoglobin in relationship to cardiovascular outcomes and death in patients with type 2 diabetes: a systematic review and meta-analysis. PloS One. 2012;7(8):e42551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Action to control cardiovascular risk in diabetes study group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;359(24):2545–59.

    Google Scholar 

  26. Inzucchi SE, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012;35(6):1364–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Society for Vascular Surgery Lower Extremity Guidelines Writing Group. Society for vascular surgery practice guidelines for atherosclerotic occlusive disease of the lower extremities: management of asymptomatic disease and claudication. J Vasc Surg. 2015;61(3 Suppl):2S–41S.

    Google Scholar 

  28. Willigendael EM, et al. Influence of smoking on incidence and prevalence of peripheral arterial disease. J Vasc Surg. 2004;40(6):1158–65.

    Article  PubMed  Google Scholar 

  29. Armstrong EJ, et al. Smoking cessation is associated with decreased mortality and improved amputation-free survival among patients with symptomatic peripheral artery disease. J Vasc Surg. 2014;60(6):1565–71.

    Article  PubMed  Google Scholar 

  30. Gabel J, et al. Smoking habits of patients undergoing treatment for intermittent claudication in the vascular quality initiative. Ann Vasc Surg. 2016;44:261–8.

    Article  Google Scholar 

  31. Goldberg RJ, et al. Physicians’ attitudes and reported practices toward smoking intervention. J Cancer Educ. 1993;8(2):133–9.

    Article  CAS  PubMed  Google Scholar 

  32. Newhall K, et al. Impact and duration of brief surgeon-delivered smoking cessation advice on attitudes regarding nicotine dependence and tobacco harms for patients with peripheral arterial disease. Ann Vasc Surg. 2017;38:113–21.

    Article  PubMed  Google Scholar 

  33. Hennrikus D, et al. Effectiveness of a smoking cessation program for peripheral artery disease patients: a randomized controlled trial. J Am Coll Cardiol. 2010;56(25):2105–12.

    Article  PubMed  Google Scholar 

  34. U.S. Department of Health and Human Services. The seventh report of the joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Bethesda, MD: National Institutes of Health; 2004.

    Google Scholar 

  35. Treatment of Mild Hypertension Research Group. Treatment of mild hypertension study. A randomized, placebo-controlled trial of a nutritional-hygienic regimen along with various drug monotherapies. Arch Intern Med. 1991;151(7):1413–23.

    Article  Google Scholar 

  36. Radack K, Deck C. Beta-adrenergic blocker therapy does not worsen intermittent claudication in subjects with peripheral arterial disease. A meta-analysis of randomized controlled trials. Arch Intern Med. 1991;151(9):1769–76.

    Article  CAS  PubMed  Google Scholar 

  37. Ahimastos AA, et al. Effect of ramipril on walking times and quality of life among patients with peripheral artery disease and intermittent claudication. A randomized controlled trial. JAMA. 2013;309(5):453–60.

    Article  CAS  PubMed  Google Scholar 

  38. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the scandinavian simvastatin survival study (4S). Lancet. 2004;344(8934):1383–9.

    Google Scholar 

  39. Heart Protection Study Collaborative Group. Randomized trial of the effects of cholesterol-lowering with simvastatin on peripheral vascular and other major vascular outcomes in 20,536 people with peripheral arterial disease and other high-risk conditions. J Vasc Surg. 2007;45(4):645–54.

    Article  Google Scholar 

  40. Takemoto M, Liao JK. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler Thromb Vasc Biol. 2001;21(11):1712–9.

    Article  CAS  PubMed  Google Scholar 

  41. McDermott MM, et al. Statin use and leg functioning in patients with and without lower-extremity peripheral arterial disease. Circulation. 2003;107(5):757–61.

    Article  CAS  PubMed  Google Scholar 

  42. Aronow WS, et al. Effect of simvastatin versus placebo on treadmill exercise time until the onset of intermittent claudication in older patients with peripheral arterial disease at six months and at one year after treatment. Am J Cardiol. 2003;92(6):711–2.

    Article  CAS  PubMed  Google Scholar 

  43. Nordanstig J, et al. Six-minute walk test closely correlated to “real-life” outdoor walking capacity and quality of life in patients with intermittent claudication. J Vasc Surg. 2014;60(2):404–9.

    Article  PubMed  Google Scholar 

  44. Rooke TW, et al. 2011 ACCF/AHA focused update of the guideline for the management of patients with peripheral artery disease (updating the 2005 guideline): a report of the ACCF/AHA task force on practice guidelines. Circulation. 2011;124(18):2020–45.

    Article  Google Scholar 

  45. Masters RK. The impact of obesity on US mortality levels: the importance of age and cohort factors in population estimates. Am J Public Health. 2013;103(10):1895–901.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Berrington de Gonzalez A, et al. Body-mass index and mortality among 1.46 million white adults. N Engl J Med. 2010;363(23):2211–9.

    Article  CAS  PubMed  Google Scholar 

  47. Farah BQ, et al. Factors associated with sedentary behavior in patients with intermittent claudication. Eur J Vasc Endovasc Surg. 2016;52(6):809–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dias RM, et al. Obesity decreases time to claudication and delays post-exercise hemodynamic recovery in elderly peripheral arterial disease patients. Gerontology. 2009;55(1):21–6.

    Article  PubMed  Google Scholar 

  49. Pinto D, et al. The association between sedentary time and quality of life from the osteoarthritis initiative: who might benefit most from treatment? Arch Phys Med Rehabil. 2017;98(12):2485–90.

    Article  PubMed  Google Scholar 

  50. Garg PK, et al. Physical activity during daily life and mortality in patients with peripheral arterial disease. Circulation. 2006;114(3):242–8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Regensteiner JG, et al. Exercise training improves functional status in patients with peripheral arterial disease. J Vasc Surg. 1996;23(1):104–15.

    Article  CAS  PubMed  Google Scholar 

  52. Murphy TP, et al. Supervised exercise, stent revascularization, or medical therapy for claudication due to aortoiliac peripheral artery disease: the CLEVER study. J Am Coll Cardiol. 2015;65(10):999–1009.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gommans LN, et al. Safety of supervised exercise therapy in patients with intermittent claudication. J Vasc Surg. 2015;61(2):512–518.e2.

    Article  PubMed  Google Scholar 

  54. Antiplatelet Trialists’ Collaboration. Collaborative overview of randomised trials of antiplatelet therapy II: maintenance of vascular graft or arterial patency by antiplatelet therapy. BMJ. 1994;308(6922):159–68.

    Article  Google Scholar 

  55. Belch J, et al. The prevention of progression of arterial disease and diabetes (POPADAD) trial: factorial randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease. BMJ. 2008;337:a1840.

    Article  PubMed  PubMed Central  Google Scholar 

  56. ASCEND Study Collaborative Group. Effects of Aspirin for primary prevention in persons with diabetes mellitus. N Engl J Med. 2018;379:1529–39

    Google Scholar 

  57. Kokoska LA, et al. Aspirin for primary prevention of cardiovascular disease in patients with diabetes: a meta-analysis. Diabetes Res Clin Pract. 2016;120:31–9.

    Article  CAS  PubMed  Google Scholar 

  58. Pasala T, et al. Aspirin resistance predicts adverse cardiovascular events in patients with symptomatic peripheral artery disease. Tex Heart Inst J. 2016;43(6):482–7.

    Article  PubMed  PubMed Central  Google Scholar 

  59. CAPRIE Steering Committee. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events. CAPRIE Steering Committee. Lancet. 1996;348(9038):1329–39.

    Article  Google Scholar 

  60. Cacoub PP, et al. Patients with PAD in the charisma trial. Eur Heart J. 2009;30:192–201.

    Article  CAS  PubMed  Google Scholar 

  61. Belch JJ, et al. Results of the randomized placebo controlled clopidogrel and ASA in bypass surgery for PAD (CASPAR trial). J Vasc Surg. 2010;52:825–33.

    Article  PubMed  Google Scholar 

  62. Bonaca MP, et al. Vorapaxar in patients with PAD: results of TRA-2 TIMI 50 trial. Circulation. 2013;127:1522–9.

    Article  CAS  PubMed  Google Scholar 

  63. Regensteiner JG, et al. Effect of cilostazol on treadmill walking, community-based walking ability, and health-related quality of life in patients with intermittent claudication due to peripheral arterial disease: meta-analysis of six randomized controlled trials. J Am Geriatr Soc. 2002;50(12):1939–46.

    Article  PubMed  Google Scholar 

  64. Feinglass J, et al. Effect of lower extremity blood pressure on physical functioning in patients who have intermittent claudication. The Chicago Claudication Outcomes Research Group. J Vasc Surg. 1996;24(4):503–11.

    Article  CAS  PubMed  Google Scholar 

  65. TASC Working Group. Management of peripheral arterial disease. Trans Atlantic Inter-Society Consensus. Eur J Vasc Endovasc Surg. 2000;31:208–90.

    Google Scholar 

  66. Toursarkissian. Arterial ulcers: evaluation and treatment.

    Google Scholar 

  67. Ruangsetakit C, et al. Transcutaneous oxygen tension: a useful predictor of ulcer healing in critical limb ischaemia. J Wound Care. 2010;19(5):202–6.

    Article  CAS  PubMed  Google Scholar 

  68. Capek P, et al. Femoropopliteal angioplasty—factors influencing long-term success. Circulation. 1991;83(2 Suppl):I70–80.

    CAS  PubMed  Google Scholar 

  69. Faglia E, et al. Early and five-year amputation and survival rate of diabetic patients with critical limb ischemia: data of a cohort study of 564 patients. Eur J Vasc Endovasc Surg. 2006;32(5):484–90.

    Article  CAS  PubMed  Google Scholar 

  70. Hinchliffe RJ, et al. Effectiveness of revascularization of the ulcerated foot in patients with diabetes and peripheral artery disease: a systematic review. Diabetes Metab Res Rev. 2016;32(Suppl 1):136–44.

    Article  PubMed  Google Scholar 

  71. Dick F, et al. Surgical or endovascular revascularization in patients with critical limb ischemia: influence of diabetes mellitus on clinical outcome. J Vasc Surg. 2007;45(4):751–61.

    Article  PubMed  Google Scholar 

  72. Norgren L, et al. Inter-Society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg. 2007;45(Suppl S):S5–67.

    Article  PubMed  Google Scholar 

  73. Faglia E, et al. Peripheral angioplasty as the first-choice revascularization procedure in diabetic patients with critical limb ischemia: prospective study of 993 consecutive patients hospitalized and followed between 1999 and 2003. Eur J Vasc Endovasc Surg. 2005;29(6):620–7.

    Article  CAS  PubMed  Google Scholar 

  74. Bradbury AW, et al. Bypass versus angioplasty in severe ischaemia of the leg (BASIL) trial: an intention-to-treat analysis of amputation-free survival and overall survival in patients randomized to a bypass surgery-first or a balloon angioplasty-first revascularization strat. J Vasc Surg. 2010;51(5 Suppl):5S–17S.

    Article  PubMed  Google Scholar 

  75. Awad S, et al. The impact of diabetes on current revascularisation practice and clinical outcome in patients with critical lower limb ischaemia. Eur J Vasc Endovasc Surg. 2006;32(1):51–9.

    Article  CAS  PubMed  Google Scholar 

  76. Wallaert JB, et al. The impact of diabetes on postoperative outcomes following lower-extremity bypass surgery. J Vasc Surg. 2012;56(5):1317–23.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Romiti M, et al. Meta-analysis of infrapopliteal angioplasty for chronic critical limb ischemia. J Vasc Surg. 2008;47(5):975–81.

    Article  PubMed  Google Scholar 

  78. Ferraresi R, et al. Long-term outcomes after angioplasty of isolated, below-the-knee arteries in diabetic patients with critical limb ischemia. Eur J Vasc Endovasc Surg. 2009;37(3):336–42.

    Article  CAS  PubMed  Google Scholar 

  79. Clark TW, et al. Predictors of long-term patency after femoropopliteal angioplasty: results from the STAR registry. J Vasc Interv Radiol. 2001;12(8):923–33.

    Article  CAS  PubMed  Google Scholar 

  80. Markose G, et al. Subintimal angioplasty for femoro-popliteal occlusive disease. J Vasc Surg. 2010;52(5):1410–6.

    Article  PubMed  Google Scholar 

  81. Bargellini I, et al. Primary infrainguinal subintimal angioplasty in diabetic patients. Cardiovasc Intervent Radiol. 2008;31(4):713–22.

    Article  PubMed  Google Scholar 

  82. Zhu YQ, et al. Subintimal angioplasty for below-the-ankle arterial occlusions in diabetic patients with chronic critical limb ischemia. J Endovasc Ther. 2009;16(5):604–12.

    Article  PubMed  Google Scholar 

  83. Tepe G, et al. Management of peripheral arterial interventions with mono or dual antiplatelet therapy -- the MIRROR study: a randomised and double-blinded clinical trial. Eur Radiol. 2012;22(9):1998–2006.

    Article  PubMed  Google Scholar 

  84. Ang H, Koppara TR, Cassese S, et al. Drug coated balloons: technical and clinical progress. Vasc Med. 2020;25(6):577–87.

    Article  CAS  PubMed  Google Scholar 

  85. Visonà A, et al. Antithrombotic treatment before and after peripheral artery percutaneous angioplasty. Blood Transfus. 2009;7(1):18–23.

    PubMed  PubMed Central  Google Scholar 

  86. Jones CE, et al. Readmission rates after lower extremity bypass vary significantly by surgical indication. J Vasc Surg. 2016;64(2):458–64.

    Article  PubMed  Google Scholar 

  87. Monahan TS, et al. Risk factors for lower-extremity vein graft failure. Semin Vasc Surg. 2009;22(4):216–26.

    Article  PubMed  Google Scholar 

  88. Singh N, et al. Factors associated with early failure of infrainguinal lower extremity arterial bypass. J Vasc Surg. 2008;47(3):556–61.

    Article  PubMed  Google Scholar 

  89. Conte MS, et al. Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J Vasc Surg. 2006;43(4):742–51.

    Article  PubMed  Google Scholar 

  90. Toursarkissian B, et al. Early duplex-derived hemodynamic parameters after lower extremity bypass in diabetics: implications for mid-term outcomes. Ann Vasc Surg. 2002;16(5):601–7.

    Article  PubMed  Google Scholar 

  91. Tinder CN, et al. Detection of imminent vein graft occlusion: what is the optimal surveillance program? Semin Vasc Surg. 2009;22(4):252–60.

    Article  PubMed  Google Scholar 

  92. Mattos MA, et al. Does correction of stenoses identified with color duplex scanning improve infrainguinal graft patency? J Vasc Surg. 1993;17:54.

    Article  CAS  PubMed  Google Scholar 

  93. Mills JL, et al. The importance of routine surveillance of distal bypass grafts with duplex scanning: a study of 379 reversed vein grafts. J Vasc Surg. 1990;12(4):379–86.

    Article  CAS  PubMed  Google Scholar 

  94. Tinder CN, et al. Efficacy of duplex ultrasound surveillance after infrainguinal vein bypass may be enhanced by identification of characteristics predictive of graft stenosis development. J Vasc Surg. 2008;48(3):613–8.

    Article  PubMed  Google Scholar 

  95. Landry GJ, et al. Objective measurement of lower extremity function and quality of life after surgical revascularization for critical lower extremity ischemia. J Vasc Surg. 2014;60(1):136–42.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Mills JL, Conte MS, Armstrong DG, et al. The Society for vascular surgery lower extremity threatened limb classification system: risk stratification based on wound, ischemia and foot infection (WIjI). J Vasc Surg. 2014;59:220.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boulos Toursarkissian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haidar, G.M., Toursarkissian, B. (2023). Peripheral Arterial Disease and Diabetes Mellitus. In: Rodriguez-Saldana, J. (eds) The Diabetes Textbook. Springer, Cham. https://doi.org/10.1007/978-3-031-25519-9_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25519-9_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25518-2

  • Online ISBN: 978-3-031-25519-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics