Skip to main content

Metabolic and Bariatric Surgery in Diabetes Management

  • Chapter
  • First Online:
The Diabetes Textbook

Abstract

Bariatric surgery is currently the most effective treatment for obesity. Since it has been shown that bariatric surgery promotes remission or improvement of comorbidities associated with obesity, such as type 2 diabetes, hypertension, dyslipidemia, and obstructive sleep apnea, the concept has migrated to metabolic surgery, and it has been included in the diabetes type 2 treatment algorithm by leading diabetes organizations. There are several surgical techniques approved by the medical authorities, each one with different outcomes and complications. Roux-en-Y gastric bypass is still the gold standard; nevertheless, sleeve gastrectomy is the most frequently performed. The restrictive and malabsorptive components that accompany the manipulation of the gastrointestinal (GI) tract do not completely explain the metabolic outcomes, and thus, multiple hormones, peptides, biliary acid metabolites, and gut microbiota composition have been found to be associated with metabolic modifications. Since its emergence, bariatric surgery has been influenced by technology, and currently, new evolving techniques are being developed and tested. Finally, to date, bariatric-metabolic surgery has been proved to be the standard of care for type 2 diabetes in obese subjects; however, research derived from bariatric centers will give rise to new techniques, less invasiveness, and the future possibility to get a wider variety of tools to prevent and to treat obesity and its metabolic abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mechanick JI, Apovian C, Brethauer S, Timothy Garvey W, Joffe AM, Kim J, et al. Clinical practice guidelines for the perioperative nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures - 2019 update: cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, the Obesity Society, American Society for Metabolic and Bariatric Surgery, obesity medicine association, and American Society of Anesthesiologists. Obesity (Silver Spring). 2020;28(4):O1–O58.

    Article  PubMed  Google Scholar 

  2. Reinhold RB. Critical analysis of long term weight loss following gastric bypass. Surg Gynecol Obstet. 1982;155(3):385–94.

    CAS  PubMed  Google Scholar 

  3. Warholm C, Marie Oien A, Raheim M. The ambivalence of losing weight after bariatric surgery. Int J Qual Stud Health Well-being. 2014;9:22876.

    Article  PubMed  Google Scholar 

  4. Henrikson V. Can small bowel resection be defended as therapy for obesity? Obes Surg. 1994;4:54.

    Article  Google Scholar 

  5. Mason EE, Ito C. Gastric bypass in obesity. Surg Clin North Am. 1967;47(6):1345–51.

    Article  CAS  PubMed  Google Scholar 

  6. Buchwald H. The evolution of metabolic/bariatric surgery. Obes Surg. 2014;24(8):1126–35.

    Article  PubMed  Google Scholar 

  7. Buchwald H, Buchwald JN. Metabolic (bariatric and nonbariatric) surgery for Type 2 diabetes: a personal perspective review. Diabetes Care. 2019;42(2):331–40.

    Article  PubMed  Google Scholar 

  8. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Nanni G, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with Type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 2015;386(9997):964–73.

    Article  PubMed  Google Scholar 

  9. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, et al. Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes. N Engl J Med. 2017;376(7):641–51.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dixon JB, Schachter LM, O'Brien PE, Jones K, Grima M, Lambert G, et al. Surgical vs conventional therapy for weight loss treatment of obstructive sleep apnea: a randomized controlled trial. JAMA. 2012;308(11):1142–9.

    Article  CAS  PubMed  Google Scholar 

  11. Rubino F, Nathan DM, Eckel RH, Schauer PR, Alberti KG, Zimmet PZ, et al. Metabolic surgery in the treatment algorithm for Type 2 diabetes: a joint statement by international diabetes organizations. Diabetes Care. 2016;39(6):861–77.

    Article  CAS  PubMed  Google Scholar 

  12. American Diabetes A. Standards of medical care in diabetes-2016 abridged for primary care providers. Clin Diabetes. 2016;34(1):3–21.

    Article  Google Scholar 

  13. Ren CJ, Fielding GA. Laparoscopic adjustable gastric banding [lap-band]. Curr Surg. 2003;60(1):30–3.

    Article  PubMed  Google Scholar 

  14. Silecchia G, Rizzello M, Casella G, Fioriti M, Soricelli E, Basso N. Two-stage laparoscopic biliopancreatic diversion with duodenal switch as treatment of high-risk super-obese patients: analysis of complications. Surg Endosc. 2009;23(5):1032–7.

    Article  CAS  PubMed  Google Scholar 

  15. Committee ACI. Updated position statement on sleeve gastrectomy as a bariatric procedure. Surg Obes Relat Dis. 2012;8(3):e21–6.

    Article  Google Scholar 

  16. English WJ, DeMaria EJ, Brethauer SA, Mattar SG, Rosenthal RJ, Morton JM. American Society for Metabolic and Bariatric Surgery estimation of metabolic and bariatric procedures performed in the United States in 2016. Surg Obes Relat Dis. 2018;14(3):259–63.

    Article  PubMed  Google Scholar 

  17. Ponce J, Nguyen NT, Hutter M, Sudan R, Morton JM. American Society for Metabolic and Bariatric Surgery estimation of bariatric surgery procedures in the United States, 2011-2014. Surg Obes Relat Dis. 2015;11(6):1199–200.

    Article  PubMed  Google Scholar 

  18. Ozsoy Z, Demir E. Which bariatric procedure is the most popular in the world? A bibliometric comparison. Obes Surg. 2018;28(8):2339–52.

    Article  PubMed  Google Scholar 

  19. Rosenthal RJ, International Sleeve Gastrectomy Expert P, Diaz AA, Arvidsson D, Baker RS, Basso N, et al. International sleeve gastrectomy expert panel consensus statement: best practice guidelines based on experience of >12,000 cases. Surg Obes Relat Dis. 2012;8(1):8–19.

    Article  PubMed  Google Scholar 

  20. Baltasar A, Serra C, Perez N, Bou R, Bengochea M, Ferri L. Laparoscopic sleeve gastrectomy: a multi-purpose bariatric operation. Obes Surg. 2005;15(8):1124–8.

    Article  PubMed  Google Scholar 

  21. Higa KD, Ho T, Boone KB. Laparoscopic Roux-en-Y gastric bypass: technique and 3-year follow-up. J Laparoendosc Adv Surg Tech A. 2001;11(6):377–82.

    Article  CAS  PubMed  Google Scholar 

  22. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37.

    Article  CAS  PubMed  Google Scholar 

  23. Buchwald H, Estok R, Fahrbach K, Banel D, Sledge I. Trends in mortality in bariatric surgery: a systematic review and meta-analysis. Surgery. 2007;142(4):621–32; discussion 32-5.

    Article  PubMed  Google Scholar 

  24. Rutledge R. The mini-gastric bypass: experience with the first 1,274 cases. Obes Surg. 2001;11(3):276–80.

    Article  CAS  PubMed  Google Scholar 

  25. Carbajo M, Garcia-Caballero M, Toledano M, Osorio D, Garcia-Lanza C, Carmona JA. One-anastomosis gastric bypass by laparoscopy: results of the first 209 patients. Obes Surg. 2005;15(3):398–404.

    Article  PubMed  Google Scholar 

  26. Chevallier JM, Arman GA, Guenzi M, Rau C, Bruzzi M, Beaupel N, et al. One thousand single anastomosis (omega loop) gastric bypasses to treat morbid obesity in a 7-year period: outcomes show few complications and good efficacy. Obes Surg. 2015;25(6):951–8.

    Article  PubMed  Google Scholar 

  27. Kular KS, Manchanda N, Rutledge R. A 6-year experience with 1,054 mini-gastric bypasses-first study from Indian subcontinent. Obes Surg. 2014;24(9):1430–5.

    Article  CAS  PubMed  Google Scholar 

  28. Mahawar KK, Jennings N, Brown J, Gupta A, Balupuri S, Small PK. "mini" gastric bypass: systematic review of a controversial procedure. Obes Surg. 2013;23(11):1890–8.

    Article  PubMed  Google Scholar 

  29. Parikh M, Eisenberg D, Johnson J, El-Chaar M, American Society for M, Bariatric Surgery Clinical Issues C. American Society for Metabolic and Bariatric Surgery review of the literature on one-anastomosis gastric bypass. Surg Obes Relat Dis. 2018;14(8):1088–92.

    Article  PubMed  Google Scholar 

  30. Carbajo MA, Luque-de-Leon E, Jimenez JM, Ortiz-de-Solorzano J, Perez-Miranda M, Castro-Alija MJ. Laparoscopic one-anastomosis gastric bypass: technique, results, and long-term follow-up in 1200 patients. Obes Surg. 2017;27(5):1153–67.

    Article  PubMed  Google Scholar 

  31. Mahawar KK, Himpens J, Shikora SA, Chevallier JM, Lakdawala M, De Luca M, et al. The first consensus statement on one anastomosis/mini gastric bypass (OAGB/MGB) using a modified Delphi approach. Obes Surg. 2018;28(2):303–12.

    Article  PubMed  Google Scholar 

  32. Sanchez-Pernaute A, Rubio Herrera MA, Perez-Aguirre E, Garcia Perez JC, Cabrerizo L, Diez Valladares L, et al. Proximal duodenal-ileal end-to-side bypass with sleeve gastrectomy: proposed technique. Obes Surg. 2007;17(12):1614–8.

    Article  PubMed  Google Scholar 

  33. Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP, Pothier CE, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Angrisani L, Santonicola A, Iovino P, Vitiello A, Higa K, Himpens J, et al. IFSO worldwide survey 2016: primary, endoluminal, and revisional procedures. Obes Surg. 2018;28(12):3783–94.

    Article  PubMed  Google Scholar 

  35. Wang Y, Guo X, Lu X, Mattar S, Kassab G. Mechanisms of weight loss after sleeve gastrectomy and adjustable gastric banding: far more than just restriction. Obesity (Silver Spring). 2019;27(11):1776–83.

    Article  PubMed  Google Scholar 

  36. Mahawar KK, Sharples AJ. Contribution of malabsorption to weight loss after Roux-en-Y gastric bypass: a systematic review. Obes Surg. 2017;27(8):2194–206.

    Article  PubMed  Google Scholar 

  37. Meek CL, Lewis HB, Reimann F, Gribble FM, Park AJ. The effect of bariatric surgery on gastrointestinal and pancreatic peptide hormones. Peptides. 2016;77:28–37.

    Article  CAS  PubMed  Google Scholar 

  38. Delhanty PJ, Neggers SJ, van der Lely AJ. Des-acyl ghrelin: a metabolically active peptide. Endocr Dev. 2013;25:112–21.

    Article  CAS  PubMed  Google Scholar 

  39. Barazzoni R, Zanetti M, Nagliati C, Cattin MR, Ferreira C, Giuricin M, et al. Gastric bypass does not normalize obesity-related changes in ghrelin profile and leads to higher acylated ghrelin fraction. Obesity (Silver Spring). 2013;21(4):718–22.

    Article  CAS  PubMed  Google Scholar 

  40. Safatle-Ribeiro AV, Petersen PA, Pereira Filho DS, Corbett CE, Faintuch J, Ishida R, et al. Epithelial cell turnover is increased in the excluded stomach mucosa after Roux-en-Y gastric bypass for morbid obesity. Obes Surg. 2013;23(10):1616–23.

    Article  PubMed  Google Scholar 

  41. Jacobsen SH, Olesen SC, Dirksen C, Jorgensen NB, Bojsen-Moller KN, Kielgast U, et al. Changes in gastrointestinal hormone responses, insulin sensitivity, and beta-cell function within 2 weeks after gastric bypass in non-diabetic subjects. Obes Surg. 2012;22(7):1084–96.

    Article  CAS  PubMed  Google Scholar 

  42. Dirksen C, Jorgensen NB, Bojsen-Moller KN, Kielgast U, Jacobsen SH, Clausen TR, et al. Gut hormones, early dumping and resting energy expenditure in patients with good and poor weight loss response after Roux-en-Y gastric bypass. Int J Obes. 2013;37(11):1452–9.

    Article  CAS  Google Scholar 

  43. Yousseif A, Emmanuel J, Karra E, Millet Q, Elkalaawy M, Jenkinson AD, et al. Differential effects of laparoscopic sleeve gastrectomy and laparoscopic gastric bypass on appetite, circulating acyl-ghrelin, peptide YY3-36 and active GLP-1 levels in non-diabetic humans. Obes Surg. 2014;24(2):241–52.

    Article  PubMed  Google Scholar 

  44. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Leccesi L, et al. Bariatric surgery versus conventional medical therapy for Type 2 diabetes. N Engl J Med. 2012;366(17):1577–85.

    Article  CAS  PubMed  Google Scholar 

  45. Pories WJ, Caro JF, Flickinger EG, Meelheim HD, Swanson MS. The control of diabetes mellitus (NIDDM) in the morbidly obese with the Greenville gastric bypass. Ann Surg. 1987;206(3):316–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cohen RV, Pinheiro JC, Schiavon CA, Salles JE, Wajchenberg BL, Cummings DE. Effects of gastric bypass surgery in patients with Type 2 diabetes and only mild obesity. Diabetes Care. 2012;35(7):1420–8.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Astiarraga B, Gastaldelli A, Muscelli E, Baldi S, Camastra S, Mari A, et al. Biliopancreatic diversion in nonobese patients with Type 2 diabetes: impact and mechanisms. J Clin Endocrinol Metab. 2013;98(7):2765–73.

    Article  CAS  PubMed  Google Scholar 

  48. McIntosh CH, Widenmaier S, Kim SJ. Glucose-dependent insulinotropic polypeptide (gastric inhibitory polypeptide; GIP). Vitam Horm. 2009;80:409–71.

    Article  CAS  PubMed  Google Scholar 

  49. Guidone C, Manco M, Valera-Mora E, Iaconelli A, Gniuli D, Mari A, et al. Mechanisms of recovery from Type 2 diabetes after malabsorptive bariatric surgery. Diabetes. 2006;55(7):2025–31.

    Article  CAS  PubMed  Google Scholar 

  50. Clements RH, Gonzalez QH, Long CI, Wittert G, Laws HL. Hormonal changes after Roux-en Y gastric bypass for morbid obesity and the control of Type-II diabetes mellitus. Am Surg. 2004;70(1):1–4. discussion-5.

    Article  PubMed  Google Scholar 

  51. Laferrere B, Heshka S, Wang K, Khan Y, McGinty J, Teixeira J, et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with Type 2 diabetes. Diabetes Care. 2007;30(7):1709–16.

    Article  CAS  PubMed  Google Scholar 

  52. Laferrere B, Teixeira J, McGinty J, Tran H, Egger JR, Colarusso A, et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with Type 2 diabetes. J Clin Endocrinol Metab. 2008;93(7):2479–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rubino F, Forgione A, Cummings DE, Vix M, Gnuli D, Mingrone G, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of Type 2 diabetes. Ann Surg. 2006;244(5):741–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nuffer WA, Trujillo JM. Liraglutide: a new option for the treatment of obesity. Pharmacotherapy. 2015;35(10):926–34.

    Article  CAS  PubMed  Google Scholar 

  55. Dimitriadis GK, Randeva MS, Miras AD. Potential hormone mechanisms of bariatric surgery. Curr Obes Rep. 2017;6(3):253–65.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hutch CR, Sandoval D. The role of GLP-1 in the metabolic success of bariatric surgery. Endocrinology. 2017;158(12):4139–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Holst JJ, Madsbad S, Bojsen-Moller KN, Svane MS, Jorgensen NB, Dirksen C, et al. Mechanisms in bariatric surgery: gut hormones, diabetes resolution, and weight loss. Surg Obes Relat Dis. 2018;14(5):708–14.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mason EE. History of obesity surgery. Surg Obes Relat Dis. 2005;1(2):123–5.

    Article  PubMed  Google Scholar 

  59. Rubino F, Gagner M. Potential of surgery for curing Type 2 diabetes mellitus. Ann Surg. 2002;236(5):554–9.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Larsson H, Holst JJ, Ahren B. Glucagon-like peptide-1 reduces hepatic glucose production indirectly through insulin and glucagon in humans. Acta Physiol Scand. 1997;160(4):413–22.

    Article  CAS  PubMed  Google Scholar 

  61. Fehmann HC, Goke R, Goke B. Cell and molecular biology of the incretin hormones glucagon-like peptide-I and glucose-dependent insulin releasing polypeptide. Endocr Rev. 1995;16(3):390–410.

    Article  CAS  PubMed  Google Scholar 

  62. Wang Y, Perfetti R, Greig NH, Holloway HW, DeOre KA, Montrose-Rafizadeh C, et al. Glucagon-like peptide-1 can reverse the age-related decline in glucose tolerance in rats. J Clin Invest. 1997;99(12):2883–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Buteau J, El-Assaad W, Rhodes CJ, Rosenberg L, Joly E, Prentki M. Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia. 2004;47(5):806–15.

    Article  CAS  PubMed  Google Scholar 

  64. Vidal J, de Hollanda A, Jimenez A. GLP-1 is not the key mediator of the health benefits of metabolic surgery. Surg Obes Relat Dis. 2016;12(6):1225–9.

    Article  PubMed  Google Scholar 

  65. Mans E, Serra-Prat M, Palomera E, Sunol X, Clave P. Sleeve gastrectomy effects on hunger, satiation, and gastrointestinal hormone and motility responses after a liquid meal test. Am J Clin Nutr. 2015;102(3):540–7.

    Article  CAS  PubMed  Google Scholar 

  66. Peterli R, Steinert RE, Woelnerhanssen B, Peters T, Christoffel-Courtin C, Gass M, et al. Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes Surg. 2012;22(5):740–8.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 2002;418(6898):650–4.

    Article  CAS  PubMed  Google Scholar 

  68. Witte AB, Gryback P, Holst JJ, Hilsted L, Hellstrom PM, Jacobsson H, et al. Differential effect of PYY1-36 and PYY3-36 on gastric emptying in man. Regul Pept. 2009;158(1-3):57–62.

    Article  CAS  PubMed  Google Scholar 

  69. Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349(10):941–8.

    Article  CAS  PubMed  Google Scholar 

  70. Sainz N, Barrenetxe J, Moreno-Aliaga MJ, Martinez JA. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism. 2015;64(1):35–46.

    Article  CAS  PubMed  Google Scholar 

  71. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006;116(7):1784–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Frikke-Schmidt H, O'Rourke RW, Lumeng CN, Sandoval DA, Seeley RJ. Does bariatric surgery improve adipose tissue function? Obes Rev. 2016;17(9):795–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Abdennour M, Reggio S, Le Naour G, Liu Y, Poitou C, Aron-Wisnewsky J, et al. Association of adipose tissue and liver fibrosis with tissue stiffness in morbid obesity: links with diabetes and BMI loss after gastric bypass. J Clin Endocrinol Metab. 2014;99(3):898–907.

    Article  CAS  PubMed  Google Scholar 

  74. Lee YJ, Heo YS, Park HS, Lee SH, Lee SK, Jang YJ. Serum SPARC and matrix metalloproteinase-2 and metalloproteinase-9 concentrations after bariatric surgery in obese adults. Obes Surg. 2014;24(4):604–10.

    Article  PubMed  Google Scholar 

  75. Chen J, Pamuklar Z, Spagnoli A, Torquati A. Serum leptin levels are inversely correlated with omental gene expression of adiponectin and markedly decreased after gastric bypass surgery. Surg Endosc. 2012;26(5):1476–80.

    Article  PubMed  Google Scholar 

  76. Kim MJ, Marchand P, Henegar C, Antignac JP, Alili R, Poitou C, et al. Fate and complex pathogenic effects of dioxins and polychlorinated biphenyls in obese subjects before and after drastic weight loss. Environ Health Perspect. 2011;119(3):377–83.

    Article  CAS  PubMed  Google Scholar 

  77. Bobbioni-Harsch E, Morel P, Huber O, Assimacopoulos-Jeannet F, Chassot G, Lehmann T, et al. Energy economy hampers body weight loss after gastric bypass. J Clin Endocrinol Metab. 2000;85(12):4695–700.

    Article  CAS  PubMed  Google Scholar 

  78. Sams VG, Blackledge C, Wijayatunga N, Barlow P, Mancini M, Mancini G, et al. Effect of bariatric surgery on systemic and adipose tissue inflammation. Surg Endosc. 2016;30(8):3499–504.

    Article  PubMed  Google Scholar 

  79. Cancello R, Zulian A, Gentilini D, Mencarelli M, Della Barba A, Maffei M, et al. Permanence of molecular features of obesity in subcutaneous adipose tissue of ex-obese subjects. Int J Obes. 2013;37(6):867–73.

    Article  CAS  Google Scholar 

  80. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Palleja A, Kashani A, Allin KH, Nielsen T, Zhang C, Li Y, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med. 2016;8(1):67.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A. 2009;106(7):2365–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Damms-Machado A, Mitra S, Schollenberger AE, Kramer KM, Meile T, Konigsrainer A, et al. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. Biomed Res Int. 2015;2015:806248.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Tremaroli V, Karlsson F, Werling M, Stahlman M, Kovatcheva-Datchary P, Olbers T, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cipriani S, Mencarelli A, Palladino G, Fiorucci S. FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. J Lipid Res. 2010;51(4):771–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li T, Holmstrom SR, Kir S, Umetani M, Schmidt DR, Kliewer SA, et al. The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling. Mol Endocrinol. 2011;25(6):1066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484–9.

    Article  CAS  PubMed  Google Scholar 

  88. Potthoff MJ, Potts A, He T, Duarte JA, Taussig R, Mangelsdorf DJ, et al. Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice. Am J Physiol Gastrointest Liver Physiol. 2013;304(4):G371–80.

    Article  CAS  PubMed  Google Scholar 

  89. Habib AM, Richards P, Rogers GJ, Reimann F, Gribble FM. Co-localisation and secretion of glucagon-like peptide 1 and peptide YY from primary cultured human L cells. Diabetologia. 2013;56(6):1413–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ahmad NN, Pfalzer A, Kaplan LM. Roux-en-Y gastric bypass normalizes the blunted postprandial bile acid excursion associated with obesity. Int J Obes. 2013;37(12):1553–9.

    Article  CAS  Google Scholar 

  91. Albaugh VL, Flynn CR, Cai S, Xiao Y, Tamboli RA, Abumrad NN. Early increases in bile acids post Roux-en-Y gastric bypass are driven by insulin-sensitizing, secondary bile acids. J Clin Endocrinol Metab. 2015;100(9):E1225–33.

    Article  PubMed  PubMed Central  Google Scholar 

  92. De Giorgi S, Campos V, Egli L, Toepel U, Carrel G, Cariou B, et al. Long-term effects of Roux-en-Y gastric bypass on postprandial plasma lipid and bile acids kinetics in female non diabetic subjects: a cross-sectional pilot study. Clin Nutr. 2015;34(5):911–7.

    Article  PubMed  Google Scholar 

  93. Immonen H, Hannukainen JC, Iozzo P, Soinio M, Salminen P, Saunavaara V, et al. Effect of bariatric surgery on liver glucose metabolism in morbidly obese diabetic and non-diabetic patients. J Hepatol. 2014;60(2):377–83.

    Article  CAS  PubMed  Google Scholar 

  94. Honka H, Koffert J, Hannukainen JC, Tuulari JJ, Karlsson HK, Immonen H, et al. The effects of bariatric surgery on pancreatic lipid metabolism and blood flow. J Clin Endocrinol Metab. 2015;100(5):2015–23.

    Article  CAS  PubMed  Google Scholar 

  95. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Brethauer SA, Navaneethan SD, et al. Bariatric surgery versus intensive medical therapy for diabetes—3-year outcomes. N Engl J Med. 2014;370(21):2002–13.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ikramuddin S, Korner J, Lee WJ, Connett JE, Inabnet WB, Billington CJ, et al. Roux-en-Y gastric bypass vs intensive medical management for the control of Type 2 diabetes, hypertension, and hyperlipidemia: the diabetes surgery study randomized clinical trial. JAMA. 2013;309(21):2240–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liang Z, Wu Q, Chen B, Yu P, Zhao H, Ouyang X. Effect of laparoscopic Roux-en-Y gastric bypass surgery on Type 2 diabetes mellitus with hypertension: a randomized controlled trial. Diabetes Res Clin Pract. 2013;101(1):50–6.

    Article  PubMed  Google Scholar 

  98. Courcoulas AP, Goodpaster BH, Eagleton JK, Belle SH, Kalarchian MA, Lang W, et al. Surgical vs medical treatments for Type 2 diabetes mellitus: a randomized clinical trial. JAMA Surg. 2014;149(7):707–15.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Halperin F, Ding SA, Simonson DC, Panosian J, Goebel-Fabbri A, Wewalka M, et al. Roux-en-Y gastric bypass surgery or lifestyle with intensive medical management in patients with Type 2 diabetes: feasibility and 1-year results of a randomized clinical trial. JAMA Surg. 2014;149(7):716–26.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD, Pories WJ, et al. Weight and Type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–56 e5.

    Article  PubMed  Google Scholar 

  101. Kashyap SR, Bhatt DL, Wolski K, Watanabe RM, Abdul-Ghani M, Abood B, et al. Metabolic effects of bariatric surgery in patients with moderate obesity and Type 2 diabetes: analysis of a randomized control trial comparing surgery with intensive medical treatment. Diabetes Care. 2013;36(8):2175–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Du X, Fu XH, Shi L, Hu JK, Zhou ZG, Cheng Z. Effects of laparoscopic Roux-en-Y gastric bypass on Chinese Type 2 diabetes mellitus patients with different levels of obesity: outcomes after 3 years’ follow-up. Obes Surg. 2018;28(3):702–11.

    Article  PubMed  Google Scholar 

  103. Sjostrom L, Peltonen M, Jacobson P, Ahlin S, Andersson-Assarsson J, Anveden A, et al. Association of bariatric surgery with long-term remission of Type 2 diabetes and with microvascular and macrovascular complications. JAMA. 2014;311(22):2297–304.

    Article  PubMed  Google Scholar 

  104. O’Brien R, Johnson E, Haneuse S, Coleman KJ, O’Connor PJ, Fisher DP, et al. Microvascular outcomes in patients with diabetes after bariatric surgery versus usual care: a matched cohort study. Ann Intern Med. 2018;169(5):300–10.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hussain S, Khan MS, Jamali MC, Siddiqui AN, Gupta G, Hussain MS, et al. Impact of bariatric surgery in reducing macrovascular complications in severely obese T2DM patients. Obes Surg. 2021;31(5):1929–36.

    Article  PubMed  Google Scholar 

  106. Priyadarshini P, Singh VP, Aggarwal S, Garg H, Sinha S, Guleria R. Impact of bariatric surgery on obstructive sleep apnoea-hypopnea syndrome in morbidly obese patients. J Minim Access Surg. 2017;13(4):291–5.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Sarkhosh K, Switzer NJ, El-Hadi M, Birch DW, Shi X, Karmali S. The impact of bariatric surgery on obstructive sleep apnea: a systematic review. Obes Surg. 2013;23(3):414–23.

    Article  PubMed  Google Scholar 

  108. Nastalek P, Polok K, Celejewska-Wojcik N, Kania A, Sladek K, Malczak P, et al. Impact of bariatric surgery on obstructive sleep apnea severity and continuous positive airway pressure therapy compliance-prospective observational study. Sci Rep. 2021;11(1):5003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Peromaa-Haavisto P, Tuomilehto H, Kossi J, Virtanen J, Luostarinen M, Pihlajamaki J, et al. Obstructive sleep apnea: the effect of bariatric surgery after 12 months. A prospective multicenter trial. Sleep Med. 2017;35:85–90.

    Article  CAS  PubMed  Google Scholar 

  110. Scopinaro N, Marinari GM, Camerini GB, Papadia FS, Adami GF. Specific effects of biliopancreatic diversion on the major components of metabolic syndrome: a long-term follow-up study. Diabetes Care. 2005;28(10):2406–11.

    Article  PubMed  Google Scholar 

  111. Piche ME, Martin J, Cianflone K, Bastien M, Marceau S, Biron S, et al. Changes in predicted cardiovascular disease risk after biliopancreatic diversion surgery in severely obese patients. Metabolism. 2014;63(1):79–86.

    Article  CAS  PubMed  Google Scholar 

  112. Aminian A, Zajichek A, Arterburn DE, Wolski KE, Brethauer SA, Schauer PR, et al. Association of metabolic surgery with major adverse cardiovascular outcomes in patients with Type 2 diabetes and obesity. JAMA. 2019;322(13):1271–82.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Doumouras AG, Wong JA, Paterson JM, Lee Y, Sivapathasundaram B, Tarride JE, et al. Bariatric surgery and cardiovascular outcomes in patients with obesity and cardiovascular disease: a population-based retrospective cohort study. Circulation. 2021;143(15):1468–80.

    Article  CAS  PubMed  Google Scholar 

  114. Parikh M, Chung M, Sheth S, McMacken M, Zahra T, Saunders JK, et al. Randomized pilot trial of bariatric surgery versus intensive medical weight management on diabetes remission in Type 2 diabetic patients who do NOT meet NIH criteria for surgery and the role of soluble RAGE as a novel biomarker of success. Ann Surg. 2014;260(4):617–22; discussion 22-4.

    Article  PubMed  Google Scholar 

  115. Espinosa O, Pineda O, Maydon HG, Sepulveda EM, Guilbert L, Amado M, et al. Type 2 diabetes mellitus outcomes after laparoscopic gastric bypass in patients with BMI <35 kg/m(2) using strict remission criteria: early outcomes of a prospective study among Mexicans. Surg Endosc. 2018;32(3):1353–9.

    Article  PubMed  Google Scholar 

  116. Bhandari M, Mathur W, Kumar R, Mishra A, Bhandari M. Surgical and advanced medical therapy for the treatment of Type 2 diabetes in class i obese patients: a short-term outcome. Obes Surg. 2017;27(12):3267–72.

    Article  PubMed  Google Scholar 

  117. Boza C, Valderas P, Daroch DA, Leon FI, Salinas JP, Barros DA, et al. Metabolic surgery: roux-en-Y gastric bypass and variables associated with diabetes remission in patients with BMI <35. Obes Surg. 2014;24(8):1391–7.

    Article  PubMed  Google Scholar 

  118. Chong K, Ikramuddin S, Lee WJ, Billington CJ, Bantle JP, Wang Q, et al. National differences in remission of Type 2 diabetes mellitus after Roux-en-Y gastric bypass surgery-subgroup analysis of 2-year results of the diabetes surgery study comparing Taiwanese with Americans with mild obesity (BMI 30-35 kg/m(2)). Obes Surg. 2017;27(5):1189–95.

    Article  PubMed  Google Scholar 

  119. Billeter AT, Kopf S, Zeier M, Scheurlen K, Fischer L, Schulte TM, et al. Renal function in Type 2 diabetes following gastric bypass. Dtsch Arztebl Int. 2016;113(49):827–33.

    PubMed  Google Scholar 

  120. Cummings DE, Arterburn DE, Westbrook EO, Kuzma JN, Stewart SD, Chan CP, et al. Gastric bypass surgery vs intensive lifestyle and medical intervention for Type 2 diabetes: the CROSSROADS randomised controlled trial. Diabetologia. 2016;59(5):945–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Adami GF, Camerini G, Papadia F, Catalano MF, Carlini F, Cordera R, et al. Type 2 diabetes remission and control in overweight and in mildly obese diabetic patients at long-term follow-up after biliopancreatic diversion. Obes Surg. 2019;29(1):239–45.

    Article  PubMed  Google Scholar 

  122. Lee WJ, Chong K, Lin YH, Wei JH, Chen SC. Laparoscopic sleeve gastrectomy versus single anastomosis (mini-) gastric bypass for the treatment of Type 2 diabetes mellitus: 5-year results of a randomized trial and study of incretin effect. Obes Surg. 2014;24(9):1552–62.

    Article  PubMed  Google Scholar 

  123. Wentworth JM, Playfair J, Laurie C, Ritchie ME, Brown WA, Burton P, et al. Multidisciplinary diabetes care with and without bariatric surgery in overweight people: a randomised controlled trial. Lancet Diabetes Endocrinol. 2014;2(7):545–52.

    Article  PubMed  Google Scholar 

  124. Al-Goblan AS, Al-Alfi MA, Khan MZ. Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndr Obes. 2014;7:587–91.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Sibley SD, Palmer JP, Hirsch IB, Brunzell JD. Visceral obesity, hepatic lipase activity, and dyslipidemia in Type 1 diabetes. J Clin Endocrinol Metab. 2003;88(7):3379–84.

    Article  CAS  PubMed  Google Scholar 

  126. Reichard P, Berglund B, Britz A, Cars I, Nilsson BY, Rosenqvist U. Intensified conventional insulin treatment retards the microvascular complications of insulin-dependent diabetes mellitus (IDDM): the Stockholm diabetes intervention study (SDIS) after 5 years. J Intern Med. 1991;230(2):101–8.

    Article  CAS  PubMed  Google Scholar 

  127. Holl RW, Swift PG, Mortensen HB, Lynggaard H, Hougaard P, Aanstoot HJ, et al. Insulin injection regimens and metabolic control in an international survey of adolescents with Type 1 diabetes over 3 years: results from the Hvidore study group. Eur J Pediatr. 2003;162(1):22–9.

    Article  PubMed  Google Scholar 

  128. Kirwan JP, Aminian A, Kashyap SR, Burguera B, Brethauer SA, Schauer PR. Bariatric surgery in obese patients with Type 1 diabetes. Diabetes Care. 2016;39(6):941–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Middelbeek RJ, James-Todd T, Patti ME, Brown FM. Short-term insulin requirements following gastric bypass surgery in severely obese women with Type 1 diabetes. Obes Surg. 2014;24(9):1442–6.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Kielgast U, Krarup T, Holst JJ, Madsbad S. Four weeks of treatment with liraglutide reduces insulin dose without loss of glycemic control in Type 1 diabetic patients with and without residual beta-cell function. Diabetes Care. 2011;34(7):1463–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Robert M, Belanger P, Hould FS, Marceau S, Tchernof A, Biertho L. Should metabolic surgery be offered in morbidly obese patients with Type I diabetes? Surg Obes Relat Dis. 2015;11(4):798–805.

    Article  PubMed  Google Scholar 

  132. Ding SA, Simonson DC, Wewalka M, Halperin F, Foster K, Goebel-Fabbri A, et al. Adjustable gastric band surgery or medical management in patients with Type 2 diabetes: a randomized clinical trial. J Clin Endocrinol Metab. 2015;100(7):2546–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dixon JB, O'Brien PE, Playfair J, Chapman L, Schachter LM, Skinner S, et al. Adjustable gastric banding and conventional therapy for Type 2 diabetes: a randomized controlled trial. JAMA. 2008;299(3):316–23.

    Article  CAS  PubMed  Google Scholar 

  134. Gracia JA, Martinez M, Aguilella V, Elia M, Royo P. Postoperative morbidity of biliopancreatic diversion depending on common limb length. Obes Surg. 2007;17(10):1306–11.

    Article  PubMed  Google Scholar 

  135. Kapeluto JE, Tchernof A, Masckauchan D, Biron S, Marceau S, Hould FS, et al. Ten-year remission rates in insulin-treated Type 2 diabetes after biliopancreatic diversion with duodenal switch. Surg Obes Relat Dis. 2020;16(11):1701–12.

    Article  PubMed  Google Scholar 

  136. Bockelman C, Hahl T, Victorzon M. Mortality following bariatric surgery compared to other common operations in Finland during a 5-year period (2009-2013). A Nationwide registry study. Obes Surg. 2017;27(9):2444–51.

    Article  PubMed  Google Scholar 

  137. Nguyen NT, Hinojosa M, Fayad C, Varela E, Wilson SE. Use and outcomes of laparoscopic versus open gastric bypass at academic medical centers. J Am Coll Surg. 2007;205(2):248–55.

    Article  PubMed  Google Scholar 

  138. Brethauer SA, Kim J, El Chaar M, Papasavas P, Eisenberg D, Rogers A, et al. Standardized outcomes reporting in metabolic and bariatric surgery. Obes Surg. 2015;25(4):587–606.

    Article  PubMed  Google Scholar 

  139. Guilbert L, Joo P, Ortiz C, Sepulveda E, Alabi F, Leon A, et al. Safety and efficacy of bariatric surgery in Mexico: a detailed analysis of 500 surgeries performed at a high-volume center. Rev Gastroenterol Mex (Engl Ed). 2019;84(3):296–302.

    CAS  PubMed  Google Scholar 

  140. Lim R, Beekley A, Johnson DC, Davis KA. Early and late complications of bariatric operation. Trauma Surg Acute Care Open. 2018;3(1):e000219.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Hu Z, Sun J, Li R, Wang Z, Ding H, Zhu T, et al. A comprehensive comparison of LRYGB and LSG in obese patients including the effects on QoL, comorbidities, weight loss, and complications: a systematic review and meta-analysis. Obes Surg. 2020;30(3):819–27.

    Article  PubMed  Google Scholar 

  142. White GE, Courcoulas AP, King WC, Flum DR, Yanovski SZ, Pomp A, et al. Mortality after bariatric surgery: findings from a 7-year multicenter cohort study. Surg Obes Relat Dis. 2019;15(10):1755–65.

    Article  PubMed  PubMed Central  Google Scholar 

  143. McCarty TR, Thompson CC. Bariatric and metabolic therapies targeting the small intestine. Tech Innov Gastrointest Endosc. 2020;22(3):145–53.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Schlottmann F, Ryou M, Lautz D, Thompson CC, Buxhoeveden R. Sutureless duodeno-ileal anastomosis with self-assembling magnets: safety and feasibility of a novel metabolic procedure. Obes Surg. 2021;31(9):4195–202.

    Article  PubMed  Google Scholar 

  145. Graves CE, Co C, Hsi RS, Kwiat D, Imamura-Ching J, Harrison MR, et al. Magnetic compression anastomosis (magnamosis): first-in-human trial. J Am Coll Surg. 2017;225(5):676–81.e1.

    Article  PubMed  Google Scholar 

  146. Harrison MR. Magnetic duodeno-ileal bypass for metabolic syndrome in rhesus monkeys: project 1R44DK112453-01A1.

    Google Scholar 

  147. EasyNOTESMedical. www.easynotes-medical.com

  148. Winder JS, Rodriguez JH. Emerging endoscopic interventions in bariatric surgery. Surg Clin North Am. 2021;101(2):373–9.

    Article  PubMed  Google Scholar 

  149. van Baar ACG, Holleman F, Crenier L, Haidry R, Magee C, Hopkins D, et al. Endoscopic duodenal mucosal resurfacing for the treatment of Type 2 diabetes mellitus: one year results from the first international, open-label, prospective, multicentre study. Gut. 2020;69(2):295–303.

    Article  PubMed  Google Scholar 

  150. McCarty TR, Thompson CC. The current state of bariatric endoscopy. Dig Endosc. 2021;33(3):321–34.

    Article  PubMed  Google Scholar 

  151. Mraz M, Marcovitch I, Lankova I. 1131-P: endoscopic duodenal submucosal laser ablation for the treatment of Type 2 diabetes mellitus: results of first-in-human pilot study. Arlington: American Diabetes Association: Diabetes; 2019.

    Book  Google Scholar 

  152. Ruban A, Ashrafian H, Teare JP. The endobarrier: duodenal-jejunal bypass liner for diabetes and weight loss. Gastroenterol Res Pract. 2018;2018:7823182.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Jirapinyo P, Haas AV, Thompson CC. Effect of the duodenal-jejunal bypass liner on glycemic control in patients with Type 2 diabetes with obesity: a meta-analysis with secondary analysis on weight loss and hormonal changes. Diabetes Care. 2018;41(5):1106–15.

    Article  CAS  PubMed  Google Scholar 

  154. Kaplan L, Buse, JB, Mullin, C, editors. EndoBarrier therapy is associated with glycemic improvement, weight loss and safety issues in patients with obesity and Type 2 diabetes on oral antihyperglycemic agents. In: Proceedings of the 76th scientific sessions; 2016 Jun 10–14; New Orleans, LA; 2016.

    Google Scholar 

  155. Aruchuna R. Duodenal-Jejunal bypass liner for the management of Type 2 diabetes mellitus and obesity. A multicenter randomized controlled trial. Ann Surg. 2022;275(3):440–7.

    Article  Google Scholar 

  156. Sandler BJ, Rumbaut R, Swain CP, Torres G, Morales L, Gonzales L, et al. One-year human experience with a novel endoluminal, endoscopic gastric bypass sleeve for morbid obesity. Surg Endosc. 2015;29(11):3298–303.

    Article  PubMed  Google Scholar 

  157. Sandler BJ, Rumbaut R, Swain CP, Torres G, Morales L, Gonzales L, et al. Human experience with an endoluminal, endoscopic, gastrojejunal bypass sleeve. Surg Endosc. 2011;25(9):3028–33.

    Article  PubMed  Google Scholar 

  158. Sandler BJ, Biertho L, Anvari M, Rumbaut R, Morales-Garza LA, Torres-Barrera G, et al. Totally endoscopic implant to effect a gastric bypass: 12-month safety and efficacy outcomes. Surg Endosc. 2018;32(11):4436–42.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Glossary

Adipokines

Hormones that are released from adipose tissue. The most well-known adipokines are leptin and adiponectin.

Bariatric Surgery

Type of surgery that involves changes in the digestive system (restriction or redirection) in order to achieve weight loss and metabolic improvement

Incretins

Intestinal peptides known for stimulating insulin production after food intake. The main incretins are PYY and GLP-1.

Laparoscopic surgery

Minimal invasive surgery where trough small incisions (5–10 mm), ports are placed, CO2 is insufflated, a camera (that transmit imagen from abdominal cavity to a monitor) and specialized instruments are inserted to perform a surgery. This type of surgery has the advantage to be faster and less invasive compared to open approach and facilitates a faster recovery.

Obesity

Abnormal or excessive fat accumulation that presents a risk to health. It is considered when BMI is ≥30 kg/m2.

Obesity Class 1

Patients with a BMI ranging from 30 to 34.9 kg/m2

Obesity Class 2

Patients with a BMI ranging from 35 to 39.9 kg/m2

Obesity Class 3

Patients with a BMI of 40 kg/m2 or greater

Roux-en-Y Gastric Bypass

Gold standard bariatric surgery that involves a re-routing of the passage of food. A small gastric pouch is created and connected to the jejunum, “bypassing” the stomach, the duodenum, and the first portion of the jejunum. After the surgery, a decrement in ghrelin and GIP and an increase of GLP-1 and PYY are observed.

Sleeve Gastrectomy

Vertical transection of the stomach, starting at the greater curvature at 6 cm proximal to the pylorus toward the angle of His. It is performed with a laparoscopic stapler, guided over a 32Fr orogastric tube. It decreases the amount of food intake, ghrelin concentrations, and appetite and increases intragastric pressure.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valadez, L.Z.M. et al. (2023). Metabolic and Bariatric Surgery in Diabetes Management. In: Rodriguez-Saldana, J. (eds) The Diabetes Textbook. Springer, Cham. https://doi.org/10.1007/978-3-031-25519-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25519-9_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25518-2

  • Online ISBN: 978-3-031-25519-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics