Skip to main content

Diabetes and Hypertension

  • Chapter
  • First Online:
The Diabetes Textbook

Abstract

Diabetes mellitus (DM) and hypertension (HTN) are two common comorbid conditions that predispose patients to cardiovascular disease (CVD). The pathophysiology of HTN in DM is multifactorial involving multiple organ systems, metabolic signaling pathways, and environmental and genetic factors. There have been several large-scale landmark trials that have shown the benefit of lowering blood pressure (BP) in diabetic patients. Lifestyle interventions such as diet and exercise and conventional antihypertensive medications are the mainstay of HTN treatment. Additionally, there are several antidiabetic medications that have been shown to influence lower BP. Ambulatory BP monitoring can be very useful in diabetes patients, who often do not have normal nocturnal drops in their blood pressure. Proper management of HTN in DM is very important to reduce CVD and chronic kidney disease (CKD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Centers for Disease Control and Prevention. National diabetes statistics report: estimates of diabetes and its burden in the United States, 2020. Atlanta, GA: U.S. Department of Health and Human Services; 2020.

    Google Scholar 

  2. American Diabetes Association. Chapter 10. Cardiovascular disease and risk management. Diabetes Care. 2021;44(Supplement 1):S125–50.

    Article  Google Scholar 

  3. Rabi D, et al. Hypertension Canada’s 2020 comprehensive guidelines for the prevention, diagnosis, risk assessment, and treatment of hypertension in adults and children. Can J Cardiol. 2020;36(5):596–624.

    Article  PubMed  Google Scholar 

  4. Karuparthi PR, Yerram P, Lastra G, Hayden MR, Sowers JR. Understanding essential hypertension from the perspective of the cardiometabolic syndrome. J Am Soc Hypertens. 2007;1(2):120–34.

    Article  PubMed  Google Scholar 

  5. Lastra G, Syed S, Kurukulasuriya RL, Manrique C, Sowers JR. Type 2 diabetes mellitus and hypertension: an update. Endocrinol Metab Clin North Am. 2014;43(1):103–22.

    Article  PubMed  Google Scholar 

  6. DeMarco VG, Aroor AR, Sowers JR. The pathophysiology of hypertension in patient with obesity. Nat Rev Endocrinol. 2014;10(6):364–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jia J, Sowers JR. Hypertension in diabetes: an update of basic mechanisms and clinical disease. Hypertension. 2021;78:1197–205.

    Article  CAS  PubMed  Google Scholar 

  8. Williams B. The hypertension in diabetes study (HDS): a catalyst for change. Diabet Med. 2008;25(Suppl. 2):13–9.

    Article  PubMed  Google Scholar 

  9. James PA, Oparil S, Carter BL, et al. 2014 evidence-based guideline for the management of high blodd pressure in adults: report from the panel members appointed to the eighth joint national committee (JNC 8). JAMA. 2014;311(5):507–20.

    Article  CAS  PubMed  Google Scholar 

  10. The ACCORD study group. Effects of intensive blood pressure control in patients with type 2 diabetes. N Engl J Med. 2010;362:1575–85.

    Article  PubMed Central  Google Scholar 

  11. Pepine CJ, Handberg EM, Cooper-DeJoff RM, For the INVEST investigators, et al. A calcium antagonist vs a non-calcium antagonist hypertension treatment strategy for patients with coronary artery disease: the international verapamil-tandolapril study (INVEST): a randomized controlled trial. JAMA. 2003;290(21):2805–16.

    Article  CAS  PubMed  Google Scholar 

  12. The ONTARGET Investigators. Telmisartan, Ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358:1547–59.

    Article  Google Scholar 

  13. Duckworth W, Abraira C, Moritz T, et al. VADT investigators. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39.

    Article  CAS  PubMed  Google Scholar 

  14. The SPRINT Research group. A randomized trial of intensive vs standard blood pressure control. N Engl J Med. 2015;373:2103–16.

    Article  PubMed Central  Google Scholar 

  15. Cosentino F, et al. 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323.

    Article  PubMed  Google Scholar 

  16. Williams B, et al. 2018 ESH/ESC guidelines for management of arterial hypertension. Eur Heart J. 2018;39:3021–104.

    Article  PubMed  Google Scholar 

  17. Unger T. 2020 International society of hypertension global hypertension practice guidelines. Hypertension. 2020;75(6):1334–57.

    Article  CAS  PubMed  Google Scholar 

  18. Handelsman Y, Bloomgarden ZT, Grunberger G, et al. American Association of Clinical Endocrinologists and American College of endocrinology—clinical practice guidelines for developing a diabetes mellitus comprehensive care plan—2015. Endocr Pract. 2015;21(4):413–37.

    Article  PubMed  Google Scholar 

  19. Zhijun W, Jin C, Vaidya A, Jin W, Huang Z, Shouling W. Xian Ga longitudinal pattern of longitudinal patterns of blood pressure, cardiovascular events, and all-cause mortality in normotensive diabetic people. Hypertension. 2016;68:71–7.

    Article  Google Scholar 

  20. Whaley-Connell A, Sowers JR. Blood pressure-related outcomes in a diabetic population. Hypertension. 2016;68(1):71–7.

    Article  Google Scholar 

  21. Clinical Guidelines on the Identification. Evaluation, and treatment of overweight and obesity in adults—the evidence report. National Institutes of health. Obes Res. 1998;6(suppl 2):51S–209S.

    Google Scholar 

  22. Jindal A, Brietzke S, Sowers JR. Obesity and the Cardiorenal metabolic syndrome: therapeutic modalities and their efficacy in improving cardiovascular and renal risk factors. Cardiorenal Med. 2012;2:314–27.

    Article  PubMed  PubMed Central  Google Scholar 

  23. U.S. Department of Health and Human Services. (n.d.). Drinking levels defined. National Institute on alcohol abuse and alcoholism. https://www.niaaa.nih.gov/alcohol-health/overview-alcohol-consumption/moderate-binge-drinking.

  24. U.S. Department of Health and Human Services. (n.d.). What is a standard drink? National Institute on Alcohol Abuse and Alcoholism. https://www.niaaa.nih.gov/alcohols-effects-health/overview-alcohol-consumption/what-standard-drink.

  25. Look AHEAD Research Group. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care. 2007;30(6):1374–83.

    Article  Google Scholar 

  26. The Look AHEAD Research Group. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;369:145–54.

    Article  PubMed Central  Google Scholar 

  27. Baudrand R, Campino C, Carvajal CA, et al. High sodium intake is associated with increased glucocorticoid production, insulin resistance and metabolic syndrome. Clin Endocrinol (Oxf). 2014;80(5):677–84.

    Article  CAS  PubMed  Google Scholar 

  28. He FJ, Li J, Macgregor GA. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ. 2013;346:f1325.

    Article  PubMed  Google Scholar 

  29. Sacks FM, Svetkey LP, Vollmer WM, et al. Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. DASH-sodium collaborative research group. N Engl J Med. 2001;344(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  30. Miller ER, Erlinger TP, Appel LJ. The effects of macronutrients on blood pressure and lipids: an overview of the DASH and OmniHeart trials. Curr Atheroscler Rep. 2006;8:460–5.

    Article  CAS  PubMed  Google Scholar 

  31. Your guide to lowering your blood pressure with DASH. U.S. Department of Health and Human Services. National Institutes of Health. National Heart, Lung, and Blood Institute.

    Google Scholar 

  32. Conlin PR, Chow D, Miller ER, et al. The effect of dietary patterns on blood pressure control in hypertensive patients: results from the dietary approaches to stop hypertension (DASH) trial. Am J Hypertens. 2000;13(9):949–55.

    Article  CAS  PubMed  Google Scholar 

  33. Lin PH, Allen JD, Li YJ, Yu M, Lien LF, Svetkey LP. Blood pressure-lowering mechanisms of the DASH dietary pattern. J Nutr Metab. 2012;2012:472396, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dernini S, Berry EM. Mediterranean diet: from a healthy diet to a sustainable dietary pattern. Front Nutr. 2015;2:15.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Willett WC, Sacks F, Trichopoulou A, et al. Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr. 1995;61(6 Suppl):1402S–6S.

    Article  CAS  PubMed  Google Scholar 

  36. Trichopoulou A, Martínez-gonzález MA, Tong TY, et al. Definitions and potential health benefits of the Mediterranean diet: views from experts around the world. BMC Med. 2014;12:112.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Patton SR, Dolan LM, Powers SW. Mealtime interactions relate to dietary adherence and glycemic control in young children with type 1 diabetes. Diabetes Care. 2006;29(5):1002–6.

    Article  PubMed  Google Scholar 

  38. Esposito K, Maiorino MI, Bellastella G, Chiodini P, Panagiotakos D, Giugliano D. A journey into a Mediterranean diet and type 2 diabetes: a systematic review with meta-analyses. BMJ Open. 2015;5(8):e008222.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Estruch R, Ros E, Salas-salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90.

    Article  CAS  PubMed  Google Scholar 

  40. Knoops KT, De Groot LC, Kromhout D, et al. Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women: the HALE project. JAMA. 2004;292(12):1433–9.

    Article  PubMed  Google Scholar 

  41. Blumenthal JA, Babyak MA, Hinderliter A, et al. Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure: the ENCORE study. Arch Intern Med. 2010;170(2):126–35.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fletcher GF, Balady G, Blair SN, Blumenthal J, Caspersen C, Chaitman B, Epstein S, Sivarajan Froelicher ES, Froelicher VF, Pina IL, Pollock ML. Statement on exercise: benefits and recommendations for physical activity programs for all Americans. Circulation. 1996;94:857–62.

    Article  CAS  PubMed  Google Scholar 

  43. Haskell WL, Lee IM, Pate RR, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1423–34.

    Article  PubMed  Google Scholar 

  44. Franckowiak SC, Dobrosielski DA, Reilley SM, Walston JD, Andersen RE. Maximal heart rate prediction in adults that are overweight or obese. J Strength Cond Res. 2011;25(5):1407–12.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Donnelly JE, Hill JO, Jacobsen DJ, et al. Effects of a 16-month randomized controlled exercise trial on body weight and composition in young, overweight men and women: the Midwest exercise trial. Arch Intern Med. 2003;163(11):1343–50.

    Article  PubMed  Google Scholar 

  46. Bergenstal R, Kim T, Trautmann M, et al. Exanatide once weekly elicited improvements in blood pressure and lipid profile over 52 weeks in patients with type 2 diabetes (abstract no. 1239). Circulation. 2008;1:18LS1086.

    Google Scholar 

  47. Kurukulasuriya LR, Sowers JR. Therapies for type 2 diabetes: lowering HbA1c and associated cardiovascular risk factors. Cardiovasc Diabetol. 2010;9:45.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mendis B, Simpson E, Macdonald I, Mansell P. Investigation of the haemodynamic effects of exenatide in healthy male subjects. Br J Clin Pharmacol. 2012;74(3):437–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Irace C, De Luca S, Shehaj E, et al. Exenatide improves endothelial function assessed by flow mediated dilation technique in subjects with type 2 diabetes: results from an observational research. Diab Vasc Dis Res. 2013;10(1):72–7.

    Article  CAS  PubMed  Google Scholar 

  50. Endocrine Society’s 96th Annual Meeting and Expo, June 21–24, 2014—Chicago LBSU-1074: Exenatide Induces an Increase in Vasodilatory Mediators.

    Google Scholar 

  51. Marso SP, et al. LEADER steering committee; LEADER trial investigators. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vilsbøll T, et al. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ. 2012;344:d7771.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schöndorf T, Forst T, Hohberg C, Pahler S, Link C, Roth W, Pfützner A, Lübben G, Link C, Pfützner A. The IRIS III study: pioglitazone improves metabolic control and blood pressure in patients with type 2 diabetes without increasing body weight. Diabetes Obes Metab. 2007;9(1):132–3.

    Article  PubMed  Google Scholar 

  54. Auclair M, Vigouroux C, Boccara F, et al. Peroxisome proliferator-activated receptor-γ mutations responsible for lipodystrophy with severe hypertension activate the cellular renin–angiotensin system. Arterioscler Thromb Vasc Biol. 2013;33:829–38.

    Article  CAS  PubMed  Google Scholar 

  55. Buchanan TA, Meehan WP, Jeng YY, et al. Blood pressure lowering by pioglitazone. Evidence for a direct vascular effect. J Clin Invest. 1995;96(1):354–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Verma S, Bhanot S, Arikawa E, Yao L, Mcneill JH. Direct vasodepressor effects of pioglitazone in spontaneously hypertensive rats. Pharmacology. 1998;56(1):7–16.

    Article  CAS  PubMed  Google Scholar 

  57. Mistry GC, Maes AL, Lasseter KC, et al. Effect of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on blood pressure in nondiabetic patients with mild to moderate hypertension. J Clin Pharmacol. 2008;48:592–8.

    Article  CAS  PubMed  Google Scholar 

  58. Liu J, Wong WT, et al. Dipeptidyl peptidase 4 inhibitor sitagliptin protects endothelial function in hypertension through a glucagon-like peptide 1-dependent mechanism. Hypertension. 2012;60(3):833–41.

    Article  CAS  PubMed  Google Scholar 

  59. Mason RP, Jacob RF, Kubant R, Ciszewski A, Corbalan JJ, Malinski T. Dipeptidyl peptidase-4 inhibition with saxagliptin enhanced nitric oxide release and reduced blood pressure and sICAM-1 levels in hypertensive rats. J Cardiovasc Pharmacol. 2012;60(5):467–73.

    Article  CAS  PubMed  Google Scholar 

  60. Oliva RV, et al. Blood pressure effects of sodium-glucose co-transport 2 (SGLT2) inhibitors. J Am Soc Hypertens. 2014;8:330–9.

    Article  CAS  PubMed  Google Scholar 

  61. Mazidi M, et al. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients. J Am Heart Assoc. 2017;6(6):6e00407.

    Article  Google Scholar 

  62. Monami M, et al. Efficacy and safety of sodium glucose co-transport-2 inhibitors in type 2 diabetes: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2014;16:457–66.

    Article  CAS  PubMed  Google Scholar 

  63. Clar C, Gill JA, Court R, Waugh N. Systematic review of SGLT2 receptor inhibitors in dual or triple therapy in type 2 diabetes. BMJ Open. 2012;2:e001007.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rosenstock J, Aggarwal N, Polidori D, Zhao Y, Arbit D, Usiskin K, Capuano G, Canovatchel W, Group CDS. Dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care. 2012;35:1232–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.

    Article  CAS  PubMed  Google Scholar 

  66. Zelniker TA, et al. Comparison of the effects of glucagon-like peptide receptor agonists and sodium-glucose cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in type 2 diabetes mellitus. Circulation. 2019;139:2022–31.

    Article  CAS  PubMed  Google Scholar 

  67. Zelniker TA, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393:31–9.

    Article  CAS  PubMed  Google Scholar 

  68. Alatrach M, Agyin C, Adams J, Chilton R, Triplitt C, DeFronzo RA, Cersosimo E. Glucose lowering and vascular protective effects of cycloset added to GLP-1 receptor agonists in patients with type 2 diabetes. Endocrinol Diabetes Metab. 2018;1(4):e00034.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chamarthi B, Ezrokhi M, Rutty D, Cincotta AH. Impact of bromocriptine-QR therapy on cardiovascular outcomes in type 2 diabetes mellitus subjects on metformin. Diabetes Obes Metab. 2011;13(10):880–4.

    Google Scholar 

  70. Vijakama P, Thakkinstain A, Lertrattananon D, et al. Reno-protective effects of renin-angiotensin system blockade in type 2 diabetic patients: a systematic review and network meta-analysis. Diabetologia. 2012;55:566–78.

    Article  Google Scholar 

  71. Wu HY, Huang JW, Lin HJ, et al. Comparative effectiveness of renin-angiotensin system blockers and other antihypertensive drugs in patients with diabetes: systamitic review and Bayesian network meta-analysis. BMJ. 2013;347:f6008.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Grossman E, Messerli FH. Management of blood pressure in patients with diabetes. Am J Hypertens. 2011;24(8):863–75.

    Article  CAS  PubMed  Google Scholar 

  73. Reboldi G, Gentile G, Angeli F, et al. Optimal therapy in hypertensive subjects with diabetes mellitus. Curr Atheroscler Rep. 2011;13:176–85.

    Article  PubMed  Google Scholar 

  74. Sowers JR, Lastra G, Roca R, et al. Initial combination therapy compared with monotherapy in diabetic hypertensive patients. J Clin Hypertens (Greenwich). 2008;10:668–76.

    Article  CAS  PubMed  Google Scholar 

  75. National High Blood Pressure Education Program. The Seventh report of the Joint National Committee on Prevention detection evaluation and treatment of high blood pressure. Bethesda, MD: National Heart, Lung, and Blood Institute (US); 2004. NIH Publication No4–5230.

    Google Scholar 

  76. Williams B, MacDonald TM, Morant S, et al. For the British hypertension Society’s PATHWAY studies group. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatmet for drug-resistant hypertension (PATHWAY-2): a randomized, double-blind, crossover trial. Lancet. 2015;386(10008):2059–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, Kolkhof P, Nowack C, Schloemer P, Joseph A, Filippatos G, FIDELIO-DKD Investigators. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020;383:2219–29.

    Article  CAS  PubMed  Google Scholar 

  78. Parving HH, Persson F, Lewis JB, Lewis EJ, Hollenberg NK, AVOID Study Investigators. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N Engl J Med. 2008;358(23):2433.

    Article  CAS  PubMed  Google Scholar 

  79. Parving H-H, Brenner BM, McMurray JJV, de Zeeuw D, Haffner SM, Solomon SD, Chaturvedi N, Persson F, Desai AS, Nicolaides M, Richard A, Xiang Z, Brunel P, Pfeffer MA, ALTITUDE Investigators. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012;367:2204–13.

    Article  CAS  PubMed  Google Scholar 

  80. Cohen JB, Cohen DL. Integrating out-of-office blood pressure in the diagnosis and management of hypertension. Curr Cardiol Rep. 2016;18:112.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Leitao CB, Canani LH, Silveiro SP, Gross JL. Ambulatory blood pressure monitoring and type 2 diabetes mellitus. Arq Bras Cardiol. 2007;88(2):315–21.

    Google Scholar 

  82. Loehr LR, Meyer ML, Poon AK, Selvin E, Palta P, et al. Prediabetes and diabetes are associated with arterial siffness in older adults: the ARIC study. Am J Hypertens. 2016;29(9):1038–45.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS, China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20.

    Article  CAS  PubMed  Google Scholar 

  84. Feldman EL, Savelieff MG, Hayek SS, Pennathur S, Kretzler M, Pop-Busui R. COVID-19 and diabetes: a collision and collusion of two diseases. Diabetes. 2020;69(12):2549–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol. 2021;17(1):11–30.

    Article  CAS  PubMed  Google Scholar 

  86. Mueller M, Purnell T, Mensah G, Cooper L. Reducing racial and ethnic disparities in hypertension prevention and control: what will it take to translate research into practice and policy? Am J Hypertens. 2015;28(6):699–716.

    Article  PubMed  Google Scholar 

  87. Naha S, Gardner MJ, Khangura D, Kurukulasuriya LR, Sowers JR. Hypertension in Diabetes. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, Dungan K, Grossman A, Hershman JM, Hofland J, Kalra S, Kaltsas G, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrère B, EA MG, Mclachlan R, Morley JE, New M, Purnell J, Sahay R, Singer F, Stratakis CA, Trence DL, Wilson DP, editors. Endotext; 2021.

    Google Scholar 

  88. Hill MA, Mantzoros C, Sowers JR. Commentary: COVID-19 in patients with diabetes. Metabolism. 2020;107:154217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rysz J, et al. Pharmacogenomics of hypertension treatment. Int J Mol Sci. 2020;21(13):4709. Published 2020 Jul 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Romayne Kurukulasuriya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Syed, H., Naha, S., Khangura, D., Gardner, M., Kurukulasuriya, L.R., Sowers, J.R. (2023). Diabetes and Hypertension. In: Rodriguez-Saldana, J. (eds) The Diabetes Textbook. Springer, Cham. https://doi.org/10.1007/978-3-031-25519-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25519-9_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25518-2

  • Online ISBN: 978-3-031-25519-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics