Skip to main content

Insulin Pump Therapy

  • Chapter
  • First Online:
The Diabetes Textbook

Abstract

Insulin pump therapy has been around since the late 1970s. From the “Big Blue Brick” to the sensor augmented pumps, significant improvements have been made in the technology. The first hybrid close loop device was approved for clinical use by the FDA in the fall of 2016.

Although there are some insulin pumps that deliver insulin in the intraperitoneal space and are more physiological, this chapter will focus on those that deliver insulin in the subcutaneous space.

Compared to multiple daily injections (MDI), insulin pump therapy has proven to decrease the rate of severe hypoglycemia, increase the quality of life, and, in some studies, improve metabolic control, measured by Hemoglobin A1c (HbA1c) (Grunberger et al., Endocr Pract 20:463–489, 2007; Phillip et al., Diabetes Care 30(6):1653–1662, 2007; Peters et al., J Clin Endocrinol Metab 101(11):3922–3937, 2016).

Although insulin pump therapy has been mostly used by type 1 diabetes (T1D) patients, it can also be prescribed to patients who live with type 2 diabetes (T2D) that are on MDI.

Insulin pumps use only rapid human insulin or fast-acting insulin analogues. The infusion of insulin is programmed to give a basal insulin infusion throughout the day, and when the patient eats, he must enter the information regarding his blood glucose (BG) level and the carbohydrate intake in grams so that the pump can calculate the insulin bolus to be given at that time. The patient can also check his BG approximately 2 h after eating, in order to give himself a correction bolus if the BG level is out of range.

Since only fast-acting insulins are used on the pumps, a patient with T1D could rapidly develop diabetic ketoacidosis (DKA), if the delivery of insulin is suspended (i.e., cannula occlusion or dislodgement). For that reason, those patients that choose insulin pump therapy must check BG levels frequently (at least four times a day) and must be willing to take action in case of pump malfunction.

Although insulin pump therapy is a cost-effective device that can help reduce long-term diabetes complications, its use is not widely spread around the world, mainly because of lack of access.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grunberger G, Abelseth J, Bailey T, Bode B, Handelsman Y, Hellman R, et al. Consensus statement by the American Association of Clinical Endocrinologists/American College of endocrinology Insulin pump management task force. Endocr Pract. 2014;20(5):463–89. https://doi.org/10.4158/EP14145.PS.

    Article  PubMed  Google Scholar 

  2. Peters AL, Ahmann AJ, Battelino T, Evert A, Hirsch IB, Murad MH, et al. Diabetes technology—continuous subcutaneous insulin infusion therapy and continuous glucose monitoring in adults: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2016;101(11):3922–37. https://doi.org/10.1210/jc.2016-2534.

    Article  CAS  PubMed  Google Scholar 

  3. Bode B, Kyllo J, Kaufman FR. Pumping protocol. A guide to insulin pump therapy initiation. 2007. https://s3.amazonaws.com/medtronic-hcp/Pumping%20Protocol%20-%20a%20Guide%20to%20Insulin%20Pump%20Therapy%20Initiation.pdf.

  4. Wolpert HA. Smart pumping: for people with diabetes: [a practical approach to mastering the insulin pump]. Alexandria, VA: American Diabetes Association; 2002. p. 181.

    Google Scholar 

  5. Galassetti P, Riddell MC. Exercise and type 1 diabetes (T1DM). Compr Physiol. 2013;3(3):1309–36.

    Article  PubMed  Google Scholar 

  6. Riddell MC, Perkins BA. Type 1 Diabetes and vigorous exercise : applications of exercise physiology to patient management. Can J Diabetes. 2006;30(416):63–71. https://doi.org/10.1016/S1499-2671(06)01010-0.

    Article  CAS  Google Scholar 

  7. Robertson K, Adolfsson P, Scheiner G, Hanas R, Riddell MC. Exercise in children and adolescents with diabetes. Pediatr Diabetes. 2009;10(SUPPL. 12):154–68.

    Article  PubMed  Google Scholar 

  8. McMahon SK, Ferreira LD, Ratnam N, Davey RJ, Youngs LM, Davis EA, et al. Glucose requirements to maintain euglycemia after moderate-intensity afternoon exercise in adolescents with type 1 diabetes are increased in a biphasic manner. J Clin Endocrinol Metab. 2007;92(3):963–8.

    Article  CAS  PubMed  Google Scholar 

  9. Gomez AM, Gomez C, Aschner P, Veloza A, Muñoz O, Rubio C, et al. Effects of performing morning versus afternoon exercise on glycemic control and hypoglycemia frequency in type 1 Diabetes patients on sensor-augmented insulin pump therapy. J Diabetes Sci Technol. 2015;40:2–7. http://www.ncbi.nlm.nih.gov/pubmed/25555390.

    Google Scholar 

  10. Tsalikian E, Mauras N, Beck RW, Tamborlane WV, Janz KF, Chase HP, et al. Impact of exercise on overnight glycemic control in children with type 1 diabetes mellitus. J Pediatr. 2005;147(4):528–34. http://linkinghub.elsevier.com/retrieve/pii/S0022347605004002.

    Article  PubMed  Google Scholar 

  11. Admon G. Exercise with and without an insulin pump among children and adolescents with type 1 diabetes mellitus. Pediatrics. 2005;116(3):e348–55.

    Article  PubMed  Google Scholar 

  12. Diabetes Research in Children Network (DirecNet) Study Group. Prevention of hypoglycemia during exercise in children with type 1 diabetes by suspending basal insulin. Diabetes Care. 2006;29(10):2200–4. https://doi.org/10.2337/dc06-0495.

    Article  CAS  Google Scholar 

  13. Mcauley SA, Horsburgh JC, Ward GM, La GA, Gooley JL, Jenkins AJ, et al. Insulin pump basal adjustment for exercise in type 1 diabetes: a randomised crossover study. Diabetologia. 2016;59:1636–44. https://doi.org/10.1007/s00125-016-3981-9.

    Article  CAS  PubMed  Google Scholar 

  14. Thabit H, Leelarathna L. Basal insulin delivery reduction for exercise in type 1 diabetes: finding the sweet spot. Diabetologia. 2016;59(8):1628–31. https://doi.org/10.1007/s00125-016-4010-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hussain SS, Oliver N. Insulin pumps and continuous glucose monitoring made easy e-book. London: Elsevier Health Sciences; 2015.

    Google Scholar 

  16. American Diabetes Association AD. Standards of medical care in diabetes—2014. Diabetes Care. 2014;37(supplement 1):S14–80. http://www.ncbi.nlm.nih.gov/pubmed/24357209

    Article  Google Scholar 

  17. Buchanan TA, Metzger BE, Freinkel N. Accelerated starvation in late pregnancy: a comparison between obese women with and without gestational diabetes mellitus. Am J Obstet Gynecol. 1990;162(4):1015–20. http://www.ncbi.nlm.nih.gov/pubmed/2327442.

    Article  CAS  PubMed  Google Scholar 

  18. Bode BW, Steed RD, Schleusener DS, Strange P. Switch to multiple daily injections with insulin glargine and insulin lispro from continuous subcutaneous insulin infusion with insulin lispro: a randomized, open-label study using a continuous glucose monitoring system. Endocr Pract. 2005;11(3):157–64. http://view.ncbi.nlm.nih.gov/pubmed/16239201.

    Article  PubMed  Google Scholar 

  19. Battelino T, Conget I, Olsen B, Schütz-Fuhrmann I, Hommel E, Hoogma R, et al. The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: a randomised controlled trial. Diabetologia. 2012;55:3155–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Danne T, Tsioli C, Kordonouri O, Blaesig S, Remus K, Roy A, et al. The PILGRIM study: in silico modeling of a predictive low glucose management system and feasibility in youth with type 1 diabetes during exercise. Diabetes Technol Ther. 2014;16(6):338–47. http://www.ncbi.nlm.nih.gov/pubmed/24447074.

    Article  CAS  PubMed  Google Scholar 

  21. Bergenstal RM, Nimri R, Beck RW, Criego A, Laffel L, Schatz D, et al. A comparison of two hybrid closed-loop systems in adolescents and young adults with type 1 diabetes (FLAIR): a multicentre, randomised, crossover trial. Lancet. 2021;397:208–19. https://doi.org/10.1016/s0140-6736(20)32514-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. CamAPS FX hybrid closed loop app. 2021. http://www.camdiab.com.

  23. Brown SA, Forlenza GP, Bode BW, Pinsker JE, Levy CJ, Criego AB, et al. Multicenter trial of a tubeless, on-body automated insulin delivery system with customizable glycemic targets in pediatric and adult participants with type 1 diabetes. Diabetes Care. 2021;44(7):1630–40. https://doi.org/10.2337/figshare.14423636.v2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Russell SJ, El-Khatib FH, Nathan DM, Magyar KL, Jiang J, Damiano ER. Blood glucose control in type 1 diabetes with a bihormonal bionic endocrine pancreas. Diabetes Care. 2012;35(11):2148–55. http://www.ncbi.nlm.nih.gov/pubmed/22923666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. El-Khatib FH, Russell SJ, Magyar KL, Sinha M, McKeon K, Nathan DM, et al. Autonomous and continuous adaptation of a Bihormonal bionic pancreas in adults and adolescents with type 1 Diabetes. J Clin Endocrinol Metab. 2014;99(5):1701–11. http://www.ncbi.nlm.nih.gov/pubmed/24483160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Russell SJ, El-Khatib FH, Sinha M, Magyar KL, McKeon K, Goergen LG, et al. Outpatient glycemic control with a bionic pancreas in type 1 Diabetes. N Engl J Med. 2014;371(4):313–25. http://www.ncbi.nlm.nih.gov/pubmed/24931572

    Article  PubMed  PubMed Central  Google Scholar 

  27. Russell SJ, Hillard MA, Balliro C, Magyar KL, Selagamsetty R, Sinha M, et al. Day and night glycaemic control with a bionic pancreas versus conventional insulin pump therapy in preadolescent children with type 1 diabetes: a randomised crossover trial. Lancet Diabetes Endocrinol. 2016;4(3):233–43. http://www.ncbi.nlm.nih.gov/pubmed/26850709.

    Article  PubMed  PubMed Central  Google Scholar 

  28. El-Khatib FH, Balliro C, Hillard MA, Magyar KL, Ekhlaspour L, Sinha M, et al. Home use of a bihormonal bionic pancreas versus insulin pump therapy in adults with type 1 diabetes: a multicentre randomised crossover trial. Lancet [Internet]. 2017;389(10067):369–80. http://www.ncbi.nlm.nih.gov/pubmed/28007348.

    Article  CAS  PubMed  Google Scholar 

  29. Farrington C. Hacking diabetes: DIY artificial pancreas systems. Lancet Diabetes Endocrinol. 2017;5(5):332. http://www.ncbi.nlm.nih.gov/pubmed/27913173.

    Article  PubMed  Google Scholar 

  30. Real-World Use of Open Source Artificial Pancreas Systems—Poster Presented at American Diabetes Association Scientific Sessions—OpenAPS.org. 2017. https://openaps.org/2016/06/11/real-world-use-of-open-source-artificial-pancreas-systems-poster-presented-at-american-diabetes-association-scientific-sessions/.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Faradji, R.N., de la Maza, E.S., Sanromán, J.R.M. (2023). Insulin Pump Therapy. In: Rodriguez-Saldana, J. (eds) The Diabetes Textbook. Springer, Cham. https://doi.org/10.1007/978-3-031-25519-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25519-9_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25518-2

  • Online ISBN: 978-3-031-25519-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics