Skip to main content

Incretin Therapies: Current Use and Emerging Possibilities

  • Chapter
  • First Online:
The Diabetes Textbook
  • 1646 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

bpm:

Beats per minute

cAMP:

Cyclic adenosine monophosphate

cAMP-GEF-2:

cAMP-guanine nucleotide exchange factor 2

CCK:

Cholecystokinin

CI:

95% confidence interval

CVOT:

Cardiovascular outcome trial

DPP-4:

Dipeptidyl-peptidase 4

fMRI:

Functional magnetic resonance imaging

GIP:

Gastric inhibitory polypeptide (also: glucose-dependent insulinotropic peptide)

GLP-1:

Glucagon-like peptide-1

HbA1c:

Hemoglobin A1c

HR:

Hazard ratio

IgG:

Immunoglobulin G

IV:

Intravenous

KATP channel:

ATP-sensitive potassium channel

KV channel:

Delayed rectifying potassium channel

LAR:

Long acting release

PYY:

Peptide YY

SC:

Subcutaneous

T1R:

Taste receptor type 1

T2D:

Type 2 diabetes

USFDA:

United States Food and Drug Administration

vs.:

Versus

References

  1. Bayliss WM, Starling EH. The mechanism of pancreatic secretion. J Physiol. 1902;28:325–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Elrick H, Stimmler L, Hlad CJ Jr, Arai Y. Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab. 1964;24:1076–82.

    Article  CAS  PubMed  Google Scholar 

  3. McIntyre N, Holdsworth CD, Turner DS. New interpretation of oral glucose tolerance. Lancet. 1964;2:20–1.

    Article  CAS  PubMed  Google Scholar 

  4. Perley MJ, Kipnis DM. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J Clin Invest. 1967;46:1954–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60:470–512. https://doi.org/10.1124/pr.108.000604.

    Article  CAS  PubMed  Google Scholar 

  6. Nauck MA, Homberger E, Siegel EG, Allen RC, Eaton RP, Ebert R, et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab. 1986;63:492–8.

    Article  CAS  PubMed  Google Scholar 

  7. Furness JB, Rivera LR, Cho HJ, Bravo DM, Callaghan B. The gut as a sensory organ. Nat Rev Gastroenterol Hepatol. 2013;10:729–40. https://doi.org/10.1038/nrgastro.2013.180.

    Article  CAS  PubMed  Google Scholar 

  8. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87:1409–39. https://doi.org/10.1152/physrev.00034.2006.

    Article  CAS  PubMed  Google Scholar 

  9. Roussel M, Mathieu J, Dalle S. Molecular mechanisms redirecting the GLP-1 receptor signalling profile in pancreatic β-cells during type 2 diabetes. Horm Mol Biol Clin Invest. 2016;26:87–95. https://doi.org/10.1515/hmbci-2015-0071.

    Article  CAS  Google Scholar 

  10. Shigeto M, Ramracheya R, Tarasov AI, Cha CY, Chibalina MV, Hastoy B, et al. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. J Clin Invest. 2015;125:4714–28. https://doi.org/10.1172/JCI81975.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Holst JJ, Christensen M, Lund A, de Heer J, Svendsen B, Kielgast U, et al. Regulation of glucagon secretion by incretins. Diabetes Obes Metab. 2011;13(Suppl 1):89–94. https://doi.org/10.1111/j.1463-1326.2011.01452.x.

    Article  CAS  PubMed  Google Scholar 

  12. Schloegl H, Percik R, Horstmann A, Villringer A, Stumvoll M. Peptide hormones regulating appetite—focus on neuroimaging studies in humans. Diabetes Metab Res Rev. 2011;27:104–12. https://doi.org/10.1002/dmrr.1154.

    Article  CAS  PubMed  Google Scholar 

  13. Nonogaki K, Kaji T, Yamazaki T, Murakami M. Pharmacologic stimulation of central GLP-1 receptors has opposite effects on the alterations of plasma FGF21 levels induced by feeding and fasting. Neurosci Lett. 2016;612:14–7. https://doi.org/10.1016/j.neulet.2015.12.011.

    Article  CAS  PubMed  Google Scholar 

  14. Schlögl H, Kabisch S, Horstmann A, Lohmann G, Müller K, Lepsien J, et al. Exenatide-induced reduction in energy intake is associated with increase in hypothalamic connectivity. Diabetes Care. 2013;36:1933–40. https://doi.org/10.2337/dc12-1925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Van Bloemendaal L, Ijzerman RG, Ten Kulve JS, Barkhof F, Konrad RJ, Drent ML, et al. GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans. Diabetes. 2014;63:4186–96. https://doi.org/10.2337/db14-0849.

    Article  CAS  PubMed  Google Scholar 

  16. Dahl D, Onishi Y, Norwood P, Huh R, Bray R, Patel H, et al. Effect of subcutaneous Tirzepatide vs. placebo added to titrated insulin glargine on glycemic control in patients with type 2 diabetes: the SURPASS-5 randomized clinical trial. JAMA. 2022;327:534–45. https://doi.org/10.1001/jama.2022.0078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015;373:11–22. https://doi.org/10.1056/NEJMoa1411892.

    Article  CAS  PubMed  Google Scholar 

  18. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22. https://doi.org/10.1056/NEJMoa1603827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377:1228–39. https://doi.org/10.1056/NEJMoa1612917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019;13(394):121–30. https://doi.org/10.1016/S0140-6736(19)31149-3.

    Article  Google Scholar 

  21. Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Køber LV, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373:2247–57. https://doi.org/10.1056/NEJMoa1509225.

    Article  CAS  PubMed  Google Scholar 

  22. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–44. https://doi.org/10.1056/NEJMoa1607141.

    Article  CAS  PubMed  Google Scholar 

  23. Husain M, Birkenfeld AL, Donsmark M, Dungan K, Eliaschewitz FG, Franco DR, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2019;381:841–51. https://doi.org/10.1056/NEJMoa1901118.

    Article  CAS  PubMed  Google Scholar 

  24. Gerstein HC, Sattar N, Rosenstock J, Ramasundarahettige C, Pratley R, Lopes RD, et al. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N Engl J Med. 2021;385:896–907. https://doi.org/10.1056/NEJMoa2108269.

    Article  CAS  PubMed  Google Scholar 

  25. Cai Y, Wei L, Ma L, Huang X, Tao A, Liu Z, et al. Long-acting preparations of exenatide. Drug Des Devel Ther. 2013;7:963–70. https://doi.org/10.2147/DDDT.S46970.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ryan DH, Lingvay I, Colhoun HM, Deanfield J, Emerson SS, Kahn SE, et al. Semaglutide effects on cardiovascular outcomes in people with overweight or obesity (SELECT) rationale and design. Am Heart J. 2020;229:61–9. https://doi.org/10.1016/j.ahj.2020.07.008.

    Article  PubMed  Google Scholar 

  27. Del Prato S, Kang J, Trautmann ME, Stewart J, Sorli CH, Derwahl M, et al. Efficacy and safety of once-monthly efpeglenatide in patients with type 2 diabetes: results of a phase 2 placebo-controlled, 16-week randomized dose-finding study. Diabetes Obes Metab. 2020;22:1176–86. https://doi.org/10.1111/dom.14020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Le Roux CW, Astrup A, Fujioka K, Greenway F, Lau DCW, Van Gaal L, et al. 3 years of liraglutide vs. placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet. 2017;389:1399–409. https://doi.org/10.1016/S0140-6736(17)30069-7.

    Article  CAS  PubMed  Google Scholar 

  29. Madsbad S. Review of head-to-head comparisons of glucagon-like peptide-1 receptor agonists. Diabetes Obes Metab. 2016;18:317–32. https://doi.org/10.1111/dom.12596.

    Article  CAS  PubMed  Google Scholar 

  30. Pratley RE, Aroda VR, Lingvay I, Lüdemann J, Andreassen C, Navarria A, et al. Semaglutide versus dulaglutide once weekly in patients with type 2 diabetes (SUSTAIN 7): a randomised, open-label, phase 3b trial. Lancet Diabetes Endocrinol. 2018;6:275–86. https://doi.org/10.1016/S2213-8587(18)30024-X.

    Article  CAS  PubMed  Google Scholar 

  31. Shi Q, Wang Y, Hao Q, Vandvik PO, Guyatt G, Li J, et al. Pharmacotherapy for adults with overweight and obesity: a systematic review and network meta-analysis of randomised controlled trials. Lancet. 2022;399:259–69. https://doi.org/10.1016/S0140-6736(21)01640-8.

    Article  CAS  PubMed  Google Scholar 

  32. Rubino DM, Greenway FL, Khalid U, O’Neil PM, Rosenstock J, Sørrig R, et al. Effect of weekly subcutaneous semaglutide vs daily liraglutide on body weight in adults with overweight or obesity without diabetes: the STEP 8 randomized clinical trial. JAMA. 2022;327:138–50. https://doi.org/10.1001/jama.2021.23619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Frías JP, Davies MJ, Rosenstock J, Pérez Manghi FC, Fernández Landó L, Bergman BK, et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med. 2021;385:503–15. https://doi.org/10.1056/NEJMoa2107519.

    Article  PubMed  Google Scholar 

  34. Giugliano D, Scappaticcio L, Longo M, Caruso P, Maiorino MI, Bellastella G, et al. GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs. Cardiovasc Diabetol. 2021;20:189. https://doi.org/10.1186/s12933-021-01366-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nahra R, Wang T, Gadde KM, Oscarsson J, Stumvoll M, Jermutus L, et al. Effects of cotadutide on metabolic and hepatic parameters in adults with overweight or obesity and type 2 diabetes: a 54-week randomized phase 2b study. Diabetes Care. 2021;44:1433–42. https://doi.org/10.2337/dc20-2151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang Q, Zhou F, Tang X, Wang J, Feng H, Jiang W, et al. Peptide-based long-acting co-agonists of GLP-1 and cholecystokinin 1 receptors as novel anti-diabesity agents. Eur J Med Chem. 2022;233:114214. https://doi.org/10.1016/j.ejmech.2022.114214.

    Article  CAS  PubMed  Google Scholar 

  37. Bossart M, Wagner M, Elvert R, Evers A, Hübschle T, Kloeckener T, et al. Effects on weight loss and glycemic control with SAR441255, a potent unimolecular peptide GLP-1/GIP/GCG receptor triagonist. Cell Metab. 2022;34:59–74.e10. https://doi.org/10.1016/j.cmet.2021.12.005.

    Article  CAS  PubMed  Google Scholar 

  38. Cao C, Yang S, Zhou Z. GLP-1 receptor agonists and pancreatic safety concerns in type 2 diabetic patients: data from cardiovascular outcome trials. Endocrine. 2020;68:518–25. https://doi.org/10.1007/s12020-020-02223-6.

    Article  CAS  PubMed  Google Scholar 

  39. Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373:232–42. https://doi.org/10.1056/NEJMoa1501352.

    Article  CAS  PubMed  Google Scholar 

  40. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317–26. https://doi.org/10.1056/NEJMoa1307684.

    Article  CAS  PubMed  Google Scholar 

  41. Toh S, Hampp C, Reichman ME, Graham DJ, Balakrishnan S, Pucino F, et al. Risk for hospitalized heart failure among new users of saxagliptin, sitagliptin, and other antihyperglycemic drugs: a retrospective cohort study. Ann Intern Med. 2016;164:705–14. https://doi.org/10.7326/M15-2568.

    Article  PubMed  PubMed Central  Google Scholar 

  42. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369:1327–35. https://doi.org/10.1056/NEJMoa1305889.

    Article  CAS  PubMed  Google Scholar 

  43. Rosenstock J, Perkovic V, Johansen OE, Cooper ME, Kahn SE, Marx N, et al. Effect of linagliptin vs. placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: the CARMELINA randomized clinical trial. JAMA. 2019;321:69–79. https://doi.org/10.1001/jama.2018.18269.

    Article  CAS  PubMed  Google Scholar 

  44. Zheng SL, Roddick AJ, Aghar-Jaffar R, Shun-Shin MJ, Francis D, Oliver N, et al. Association between use of sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide 1 agonists, and dipeptidyl peptidase 4 inhibitors with all-cause mortality in patients with type 2 diabetes: a systematic review and meta-analysis. JAMA. 2018;319:1580–91. https://doi.org/10.1001/jama.2018.3024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2457–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiko Schlögl .

Editor information

Editors and Affiliations

Glossary

Glucagon-like peptide 1 (GLP-1)

Peptide hormone produced mainly in the L-cells of the distal ileum and the colon. Increases insulin secretion of the β-cells of the pancreas when blood glucose is elevated. Analogs of GLP-1 were the first incretin mimetics approved for the treatment of type 2 diabetes.

Gastric inhibitory polypeptide (GIP, later also termed glucose-dependent insulinotropic peptide)

Peptide hormone produced in the enteroendocrine cells of the duodenum and the jejunum. Increases insulin secretion of the β-cells of the pancreas when blood glucose is elevated.

Functional magnetic resonance imaging (fMRI)

Technique to assess brain perfusion and thus receive information about the activity of different areas of the brain.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schlögl, H., Stumvoll, M. (2023). Incretin Therapies: Current Use and Emerging Possibilities. In: Rodriguez-Saldana, J. (eds) The Diabetes Textbook. Springer, Cham. https://doi.org/10.1007/978-3-031-25519-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25519-9_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25518-2

  • Online ISBN: 978-3-031-25519-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics