Skip to main content

The “Old” Oral Antidiabetics

  • Chapter
  • First Online:
The Diabetes Textbook

Abstract

Treatment of patients with type 2 diabetes aims to avoid acute symptoms of hyperglycemia and to prevent macro- and microvascular complications. In recent years, the number of glucose-lowering drugs increased to unprecedented levels. The American Diabetes Association (ADA) lists seven drug classes of available glucose-lowering agents in the last edition of their standards of medical care in diabetes (American Diabetes Association, Diabetes Care 44(Suppl 1):S111–S124, 2021). All are proven to decrease HbA1c-levels or postprandial glucose excursions, but evidence on patient-relevant outcomes, such as cardiovascular mortality, amputations, or retinopathy, is sparse. Reduction of HbA1c-values is often used as a surrogate outcome measure to assess the efficacy of antidiabetic medication. However, its appropriateness has been disproven (Buhse et al., Novelties in diabetes, endocrine development, Karger, Basel, 2015; Bousageon, Br J Clin Pract 67:85–87, 2017). In the Action to Control Cardiovascular Risk in Diabetes (ACCORD) study (Gerstein et al., N Engl J Med 358: 2545–2559, 2008; Tian et al., Diabetes Care 43:1293–1299, 2020) and the Veterans Affairs Diabetes Trial (VADT) (Duckworth et al., N Engl J Med 360:129–139, 2009; Reaven et al., N Engl J Med 380:2215–2224, 2019), a rigid treatment regime with low HbA1c-targets did not result in better patient-relevant outcomes. Patients in the intervention arm of the ACCORD study even had a higher risk of mortality, and consequently, the study was terminated earlier (Gerstein et al., N Engl J Med 358: 2545–2559, 2008). Other drugs have been withdrawn from the market because of a negative benefit-risk ratio, for example, phenformin, which increased the risk of lactic acidosis or rosiglitazone that reduced HbA1c-values but increased cardiovascular risk (Wallach et al., BMJ 368:I7078, 2020). In recent years, pharmaceutical companies decided to withdraw several new antidiabetic agents from the German market, such as vildagliptin and canagliflozin, because no additional benefit over usual care could be demonstrated and therefore health insurances would not have covered additional costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Diabetes Association. Pharmacologic approaches to glycemic treatment standards of medical care in diabetes—2021. Diabetes Care. 2021;44(Suppl 1):S111–24.

    Article  Google Scholar 

  2. Buhse S, Mühlhauser I, Lenz M. The ‘old’ anti-diabetic agents: a systematic inventory. In: Stettler C, Christ E, Diem P, editors. Novelties in diabetes. Endocrine development, vol. 31. Basel: Karger; 2015. p. 28–42.

    Chapter  Google Scholar 

  3. Bousageon R. Prevention of complications in type 2 diabetes. Is drug glucose control evidence-based? Br J Clin Pract. 2017;67:85–7.

    Google Scholar 

  4. Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–59.

    Article  CAS  PubMed  Google Scholar 

  5. Tian J, Ohkuma T, Cooper M, Harrap S, Mancia G, Poulter N, et al. Effects of intensive glycemic control on clinical outcomes among patients with type 2 diabetes with different levels of cardiovascular risk and hemoglobin A1c in the ADVANCE trial. Diabetes Care. 2020;43:1293–9.

    Article  CAS  PubMed  Google Scholar 

  6. Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39.

    Article  CAS  PubMed  Google Scholar 

  7. Reaven PD, Emanuele NV, Witala WL, Bahn GD, Reda DJ, McCarren MM, et al. Intensve glucose control in patients with type 2 diabetes—15 year follow-up. N Engl J Med. 2019;380:2215–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wallach JD, Wang K, Zhang AD, Cheng D, Grossetta Nardini HK, Lin H, et al. Updating into rosiglitazone and cardiovascular risk through shared data: individual patient and summary level meta-analysis. BMJ. 2020;368:I7078.

    Article  Google Scholar 

  9. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of diabetes (EASD). Diabetologia. 2012;55(6):1577–96.

    Article  CAS  PubMed  Google Scholar 

  10. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38:140–9.

    Article  PubMed  Google Scholar 

  11. Charles C, Gafni A, Whelan T. Shared decision-making in the medical encounter: what does it mean? (or it takes at least two to tango). Soc Sci Med. 1997;44:681–92.

    Article  CAS  PubMed  Google Scholar 

  12. Marteau TM, Dormandy E, Michie S. A measure of informed choice. Health Expect. 2001;4:99–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bunge M, Mühlhauser I, Steckelberg A. What constitutes evidence-based patient information? Overview of discussed criteria. Patient Educ Couns. 2010;78(3):316–28.

    Article  PubMed  Google Scholar 

  14. Mühlhauser I, Berger M. Evidence-based patient information in diabetes. Diabet Med. 2000;17:823–9.

    Article  PubMed  Google Scholar 

  15. Montori VM, Kunneman M, Brito JP. Shared decision making and improving health care: the answer is not in. JAMA. 2017;318:617–8.

    Article  PubMed  Google Scholar 

  16. Stacey D, Legare F, Lewis K, et al. Decision aids for people facing health treatment or screening decisions. Cochrane Database Syst Rev. 2017;4:Cd001431.

    PubMed  Google Scholar 

  17. Garber AJ, Handelsman Y, Grunberger G, Einhorn D, Abrahamson MJ, Barzilay JI, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm—2020 executive summary. Endocr Pract. 2020;26:107–39.

    Article  PubMed  Google Scholar 

  18. National Institute for Health and Care Excellence (NICE). Type 2 diabetes in adults: management. London: NICE guideline; 2017. nice.org.uk/guidance/ng28.

    Google Scholar 

  19. Buhse S, Mühlhauser I, Heller T, et al. Informed shared decision-making programme on the prevention of myocardial infarction in type 2 diabetes: a randomised controlled trial. BMJ Open. 2015;5:e009116.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lenz M, Kasper J, Mühlhauser I. Development of a patient decision aid for prevention of myocardial infarction in type 2 diabetes—rationale, design and pilot testing. Psychosoc Med. 2009;6:Doc05.

    PubMed  PubMed Central  Google Scholar 

  21. Higgins JP, Welton NJ. Network meta-analysis: a norm for comparative effectiveness? Lancet. 2015;386:628–30.

    Article  PubMed  Google Scholar 

  22. Griffin SJ, Leaver JK, Irving GJ. Impact of metformin on cardiovascular disease: a meta-analysis of randomised trials among people with type 2 diabetes. Diabetologia. 2017;60:1620–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Madsen KS, Kähler P, Aronsen-Kähler L, Madsbad S, Gnesin F, Metzendorf MI, et al. Metformin and second or third generation sulphonylurea combination therapy for adults with type 2 diabetes mellitus. Cochrane Database Syst Rev. 2019;4:CD012368.

    PubMed  Google Scholar 

  24. Al Khalifa RA, Alnhdi A, Alghar H, Alanazi M. The effect of adding metformin to insulin therapy for type 1 diabetes mellitus children: a systematic review and meta-analysis. Pediatr Diabetes. 2017;18:664–78.

    Article  Google Scholar 

  25. Li X, Celotto S, Pizzol D, Gasevic D, Ji M-M, Barnini T, et al. Metformin and health outcomes: an umbrella review of systematic reviews with meta-analysis. Eur J Clin Invest. 2021;51(e13536):1–13.

    Google Scholar 

  26. Gu T, Ma J, Zhang Q, Zhu L, Zhang H, Xu L, et al. Comparative effect of saxagliptin and glimepiride with a composite endpoint of adequate glycaemic control without hypoglycaemia and without weight gain in patients uncontrolled with metformin therapy: results from the SPECIFY study, a 48-week, multi-Centre, randomized, controlled trial. Diabetes Obes Metab. 2019;21:939–48.

    Article  CAS  PubMed  Google Scholar 

  27. Rosenstock J, Kahn SE, Johansen OE, Zinman B, Espeland MA, Woerle HJ, et al. Effect of Linagliptin vs glimepiride on major adverse cardiovascular outcomes in patients with type 2 diabetes. The CAROLINA randomized clinical trial. JAMA. 2019;322:1155–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ridderstrale M, Rosenstock J, Andersen KR, Woerle HJ, Salsali A. Empagliflozin compared with glimepiride in metformin-treated patients with type 2 diabetes: 208 week data from a masked randomized controlled trial. Diabetes Obes Metab. 2018;20:2768–77.

    Article  CAS  PubMed  Google Scholar 

  29. Hollander P, Liu J, Johnson J, Jiang ZW, Golm G, Huyck S, et al. Ertugliflozin compared with glimepiride in patients with type 2 diabetes mellitus inadequately controlled on metformin: the VERTIS SU randomized study. Diabetes Ther. 2018;9:193–207.

    Article  CAS  PubMed  Google Scholar 

  30. Zhu ZN, Jiang YF, Ding T. Risk of fracture with thiazolidinediones: an updated meta-analysis of randomized clinical trials. Bone. 2014;68:115–23.

    Article  CAS  PubMed  Google Scholar 

  31. Turner RM, Kwok CS, Chen-Turner C, Maduakor CA, Singh S, Loke YK. Thiazolidinediones and associated risk of bladder cancer: a systematic review and meta-analysis. Br J Clin Pharmacol. 2014;78:258–73.

    Article  CAS  PubMed  Google Scholar 

  32. Liao HW, Saver JL, Wu YL, Chen TH, Lee M, Ovbiagele B. Pioglitazone and cardiovascular outcomes in patients with insulin resistance, pre-diabetes and type 2 diabetes: a systematic review and meta-analysis. BMJ Open. 2017;7:e013927.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee M, Saver JL, Liao HW, Lin CH, Ovbiagele B. Pioglitazone for secondary stroke prevention: a systematic review and meta-analysis. Stroke. 2017;48:388–93.

    Article  CAS  PubMed  Google Scholar 

  34. Esposito K, Chiodini P, Bellastella G, Maiorino MI, Giugliano D. Proportion of patients at HbA1c target <7% with eight classes of antidiabetic drugs in type 2 diabetes: systematic review of 218 randomized controlled trials with 78 945 patients. Diabetes Obes Metab. 2012;14:228–33.

    Article  CAS  PubMed  Google Scholar 

  35. Maruthur NM, Tseng E, Hutfless S, et al. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2016;164:740–51.

    Article  PubMed  Google Scholar 

  36. Bolen S, Tseng E, Hutfless S, et al. AHRQ comparative effectiveness reviews diabetes medications for adults with type 2 diabetes: an update. Rockville, MD: Agency for Healthcare Research and Quality; 2016.

    Google Scholar 

  37. Sc P, Mavridis D, Nicolucci A, Johnson DW, Tonelli M, Craig JC, et al. Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes. A meta-analysis. JAMA. 2016;316:313–24.

    Article  Google Scholar 

  38. Tsapas A, Avreginos I, Karagiannis T, Malandris K, Manolopoulos A, Andreadis P, et al. Comparative effectiveness of glucose-lowering drugs for type 2 diabetes. A systematic review and network met-analysis. Ann Intern Med. 2021;174:2–9.

    Article  Google Scholar 

  39. Meinert CL, Knatterud GL, Prout TE, Klimt CR. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. II Mortality results. Diabetes. 1970;19(Suppl):789–830.

    Google Scholar 

  40. The University Group Diabetes Program. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. V Evaluation of pheniformin therapy. Diabetes. 1975;24(Suppl 1):65–184.

    Google Scholar 

  41. U. K. Prospective Diabetes Study Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65.

    Article  Google Scholar 

  42. U. K. Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.

    Article  Google Scholar 

  43. German Medical Association, National Association of statutory health insurance physicians, Association of the Scientific Medical Societies: National disease management guidelines programme: Typ-2-diabetes mellitus—therapy. 2013. http://www.versorgungsleitlinien.de/themen/diabetes2/dm2_therapie/pdf.

  44. Boussageon R, Gueyffier F, Cornu C. Metformin as firstline treatment for type 2 diabetes: are we sure? BMJ. 2016;352:h6748.

    Article  PubMed  Google Scholar 

  45. Berger M, Mühlhauser I. Diabetes care and patient-oriented outcomes. JAMA. 1999;281:1676–8.

    Article  CAS  PubMed  Google Scholar 

  46. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89.

    Article  CAS  PubMed  Google Scholar 

  47. Mühlhauser I. Follow-up of intensive glucose control in type 2 diabetes (letter). N Engl J Med. 2009;360:417, author reply 418.

    PubMed  Google Scholar 

  48. Boussageon R, Supper I, Bejan-Angoulvant T, et al. Reappraisal of metformin efficacy in the treatment of type 2 diabetes: a meta-analysis of randomised controlled trials. PLoS Med. 2012;9:e1001204.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rachmani R, Slavachevski I, Levi Z, Zadok B, Kedar Y, Ravid M. Metformin in patients with type 2 diabetes mellitus: reconsideration of traditional contraindications. Eur J Intern Med. 2002;13:428.

    Article  CAS  PubMed  Google Scholar 

  50. Cryer DR, Nicholas SP, Henry DH, Mills DJ, Stadel BV. Comparative outcomes study of metformin intervention versus conventional approach the COSMIC approach study. Diabetes Care. 2005;28:539–43.

    Article  CAS  PubMed  Google Scholar 

  51. Kooy A, de Jager J, Lehert P, et al. Long-term effects of metformin on metabolism and microvascular and macrovascular disease in patients with type 2 diabetes mellitus. Arch Intern Med. 2009;169:616–25.

    Article  CAS  PubMed  Google Scholar 

  52. Hong J, Zhang Y, Lai S, et al. Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care. 2013;36:1304–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355:2427–43.

    Article  CAS  PubMed  Google Scholar 

  54. Salpeter SR, Greyber E, Pasternak GA, Salpeter EE. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev. 2009;4:CD002967.

    Google Scholar 

  55. European Medicines Agency. Use of Metformin to treat diabetes now expanded to patients with moderately reduced kidney function. EMA/603690/2016. http://www.ema.euroa.eu/docs/en_GB/document_library.

  56. U.S. Food and Drug Administration. Metformin-containing drugs: drug safety communication—revised warnings for certain patients with reduced kidney function. 2016. https://www.fda.gov/safety/medwatch/safetyinformation/safetyalertsforhumanmedicalproducts/ucm494829.htm.

  57. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2457–71.

    Article  CAS  PubMed  Google Scholar 

  58. Nissen SE, Wolski K. Rosiglitazone revisited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality. Arch Intern Med. 2010;170:1191–201.

    Article  CAS  PubMed  Google Scholar 

  59. Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373:2125–35.

    Article  CAS  PubMed  Google Scholar 

  60. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive study (PROspective pioglitAzone clinical trial in macroVascular events): a randomised controlled trial. Lancet. 2005;366:1279–89.

    Article  CAS  PubMed  Google Scholar 

  61. Van de Laar FA, Lucassen PL, Akkermans RP, Van de Lisdonk EH, De Grauw WJ. Alpha-glucosidase inhibitors for people with impaired glucose tolerance or impaired fasting blood glucose. Cochrane Database Syst Rev. 2006;4:CD005061.

    Google Scholar 

  62. Van de Laar FA, Lucassen PLBJ, Akkermans RP, Van de Lisdonk EH, Rutten GEHM, Van Weel C. Alpha-glucosidase inhibitors for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2005;2:CD003639.

    Google Scholar 

  63. Holman RR, Bethel MA, Chan JC, et al. Rationale for and design of the Acarbose cardiovascular evaluation (ACE) trial. Am Heart J. 2014;168:23–29.e22.

    Article  CAS  PubMed  Google Scholar 

  64. Black C, Donnelly P, McIntyre L, Royle P, Shepherd JJ, Thomas S. Meglitinide analogues for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2009;2:CD004654.

    Google Scholar 

  65. Singh AK, Singh R, Chakraborty PP. Diabetes monotherapies versus metformin-based combination therapy for the treatment of type 2 diabetes. Int J Gen Med. 2021;14:3833–48.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Domecq JP, Prutsky G, Lepppin A, Sonbol MB, Altayar O, Undavalli C, et al. Clinical review: drugs commonly associated with weight change: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2015;100:363–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Leonard CE, Han X, Brensinger M, Bilker WB, Cardillo S, Flory JH, et al. Comparative risk of serious hypoglycemia with oral antidiabetic monotherapy: a retrospective cohort study. Pharmacoepidemiol Drug Saf. 2017;27(1):9–18.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Khunti K, Chatterjee S, Gerstein H, Zoungas S, Davies MJ. Do sulphonylureas still have a place in clinical practice? Lancet Diabetes Endocrinol. 2018;6:821–32.

    Article  CAS  PubMed  Google Scholar 

  69. Charles C, Whelan T, Gafni A. What do we mean by partnership in making decisions about treatment? BMJ. 1999;319:780–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Charles C, Gafni A, Whelan T. Shared decision making in the medical encounter: what does it mean? (or, it takes two to tango). Soc Sci Med. 1997;44:681–92.

    Article  CAS  PubMed  Google Scholar 

  71. Kunneman M, Montori VM, Castaneda-Guarderas A, Hess EP. What is shared decision making? (and what it is not). Acad Emerg Med. 2016;23:1320–4.

    Article  PubMed  Google Scholar 

  72. Buhse S, Mühlhauser I, Kuniss N, et al. An informed shared decision making programme on the prevention of myocardial infarction for patients with type 2 diabetes in primary care: protocol of a cluster randomised, controlled trial. BMC Fam Pract. 2015;16:43.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Buhse S, Kuniss N, Liethmann K, Müller UA, Lehmann T, Mühlhauser I. An informed shared decision making programme for patients with type 2 diabetes in primary care: cluster randomised controlled trial. In: 53rd annual meeting of the European Association for the Study of diabetes, Lisbon; 2017.

    Google Scholar 

  74. U. K. Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ. 1998;317:703–13.

    Article  Google Scholar 

  75. Mullan RJ, Montori VM, Shah ND, et al. The diabetes mellitus medication choice decision aid: a randomized trial. Arch Intern Med. 2009;169:1560–8.

    Article  PubMed  Google Scholar 

  76. Weymiller AJ, Montori VM, Jones LA, et al. Helping patients with type 2 diabetes mellitus make treatment decisions: statin choice randomized trial. Arch Intern Med. 2007;167:1076–82.

    Article  CAS  PubMed  Google Scholar 

  77. Mann DM, Ponieman D, Montori VM, Arciniega J, McGinn T. The statin choice decision aid in primary care: a randomized trial. Patient Educ Couns. 2010;80:138–40.

    Article  PubMed  Google Scholar 

  78. Yu CH, Stacey D, Sale J, et al. Designing and evaluating an interprofessional shared decision-making and goal-setting decision aid for patients with diabetes in clinical care -systematic decision aid development and study protocol. Implement Sci. 2014;9:16.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mathers N, Ng CJ, Campbell MJ, Colwell B, Brown I, Bradley A. Clinical effectiveness of a patient decision aid to improve decision quality and glycaemic control in people with diabetes making treatment choices: a cluster randomised controlled trial (PANDAs) in general practice. BMJ Open. 2012;2:e001469.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wilcox T, De Block C, Schwartzbard AZ, Newman JD. Diabetic agents, from metformin to SGLT2 inhibitors and GLP1 receptor agonists. J Am Coll Phys. 2020;75:1056–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mühlhauser, I., Buhse, S., Rodriguez-Saldana, J. (2023). The “Old” Oral Antidiabetics. In: Rodriguez-Saldana, J. (eds) The Diabetes Textbook. Springer, Cham. https://doi.org/10.1007/978-3-031-25519-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25519-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25518-2

  • Online ISBN: 978-3-031-25519-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics