Skip to main content

Comparison of Cardiac Activity and Subjective Measures During Virtual Reality and Real Aircraft Flight

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021)

Abstract

Pilot training requires significant resources, both material and human. Immersive virtual reality is a good way to reduce costs and get around the lack of resources availability. However, the effectiveness of virtual flight simulation has not yet been fully assessed, in particular, using physiological measures. In this study, 10 pilots performed standard traffic patterns on both real aircraft (DR400) and its virtual simulation (in head-mounted device and motion platform). We used subjective measures through questionnaires of immersion, presence, and ability to control the aircraft, and objective measures using heart rate, and heart rate variability. The results showed that the pilots were able to fully control the aircraft. Points to improve include updating the hardware (better display resolution and hand tracking) and the simulator dynamics for modelling ground effect. During the real experience, the overall heart rate (HR) was higher (+20 bpm on average), and the heart rate variability (HRV) was lower compared to the virtual experience. The flight phases in both virtual and real flights induced similar cardiac responses with more mental efforts during take-off and landing compared to the downwind phase. Overall, our findings indicate that virtual flight reproduces real flight and can be used for pilot training. However, replacing pilot training with exclusively virtual flight hours seems utopian at this point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, S., Irshad, L., Demirel, H.O., Tumer, I.Y.: A comparison between virtual reality and digital human modeling for proactive ergonomic design. In: Duffy, V.G. (ed.) HCII 2019. LNCS, vol. 11581, pp. 3–21. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22216-1_1

    Chapter  Google Scholar 

  2. Auer, S., Gerken, J., Reiterer, H., Jetter, H.C.: Comparison between virtual reality and physical flight simulators for cockpit familiarization. In: Mensch und Computer 2021, pp. 378–392 (2021)

    Google Scholar 

  3. Ayoub, A., Pulijala, Y.: The application of virtual reality and augmented reality in oral & maxillofacial surgery. BMC Oral Health 19(1), 1–8 (2019)

    Article  Google Scholar 

  4. Bouchard, S., Robillard, G., Renaud, P.: Questionnaire sur la propension à l’immersion. Lab Cyberpsychologie L’UQO (2002)

    Google Scholar 

  5. Bric, J.D., Lumbard, D.C., Frelich, M.J., Gould, J.C.: Current state of virtual reality simulation in robotic surgery training: a review. Surg. Endosc. 30(6), 2169–2178 (2016)

    Article  Google Scholar 

  6. Chae, J.: Study on firefighting education and training applying virtual reality. Fire Sci. Eng. 32(1), 108–115 (2018)

    Article  Google Scholar 

  7. Clifford, R.M., Jung, S., Hoermann, S., Billinghurst, M., Lindeman, R.W.: Creating a stressful decision making environment for aerial firefighter training in virtual reality. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 181–189. IEEE (2019)

    Google Scholar 

  8. Dehais, F., et al.: Monitoring pilot’s mental workload using erps and spectral power with a six-dry-electrode eeg system in real flight conditions. Sensors 19(6), 1324 (2019)

    Google Scholar 

  9. Dehais, F., Karwowski, W., Ayaz, H.: Brain at work and in everyday life as the next frontier: grand field challenges for neuroergonomics. Front. Neuroergon. 1 (2020)

    Google Scholar 

  10. Durantin, G., Gagnon, J.F., Tremblay, S., Dehais, F.: Using near infrared spectroscopy and heart rate variability to detect mental overload. Behav. Brain Res. 259, 16–23 (2014)

    Article  Google Scholar 

  11. Feng, Q., Shum, H.P., Morishima, S.: Resolving occlusion for 3d object manipulation with hands in mixed reality. In: Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology, pp. 1–2 (2018)

    Google Scholar 

  12. Feng, Z., González, V.A., Amor, R., Lovreglio, R., Cabrera-Guerrero, G.: Immersive virtual reality serious games for evacuation training and research: a systematic literature review. Comput. Educ. 127, 252–266 (2018)

    Article  Google Scholar 

  13. Fussell, S.G., Truong, D.: Preliminary results of a study investigating aviation student’s intentions to use virtual reality for flight training. Int. J. Aviat. Aeron. Aeros. 7(3), 2 (2020)

    Google Scholar 

  14. Gateau, T., Ayaz, H., Dehais, F.: In silico vs. over the clouds: on-the-fly mental state estimation of aircraft pilots, using a functional near infrared spectroscopy based passive-bci. Front. Human Neurosci. 12, 187 (2018)

    Google Scholar 

  15. Gramann, K., et al.: Grand field challenges for cognitive neuroergonomics in the coming decade. Front. Neuroergon. 2 (2021)

    Google Scholar 

  16. Grantcharov, T.P., Kristiansen, V.B., Bendix, J., Bardram, L., Rosenberg, J., Funch-Jensen, P.: Randomized clinical trial of virtual reality simulation for laparoscopic skills training. Brit. J. Surg. 91(2), 146–150 (2004). https://doi.org/10.1002/bjs.4407

  17. Hays, R.T., Jacobs, J.W., Prince, C., Salas, E.: Flight simulator training effectiveness: a meta-analysis. Milit. Psychol. 4(2), 63–74 (1992)

    Article  Google Scholar 

  18. Heathers, J.A.: Everything hertz: methodological issues in short-term frequency-domain hrv. Front. Physiol. 5, 177 (2014)

    Article  Google Scholar 

  19. Jensen, L., Konradsen, F.: A review of the use of virtual reality head-mounted displays in education and training. Educ. Inf. Technol. 23(4), 1515–1529 (2018)

    Article  Google Scholar 

  20. Joda, T., Gallucci, G., Wismeijer, D., Zitzmann, N.: Augmented and virtual reality in dental medicine: a systematic review. Comput. Biol. Med. 108, 93–100 (2019)

    Article  Google Scholar 

  21. Jörg, S., Ye, Y., Mueller, F., Neff, M., Zordan, V.: Virtual hands in vr: motion capture, synthesis, and perception. In: SIGGRAPH Asia 2020 Courses, pp. 1–32 (2020)

    Google Scholar 

  22. Kim, Y., Kim, H., Kim, Y.O.: Virtual reality and augmented reality in plastic surgery: a review. Arch. Plast. Surg. 44(3), 179 (2017)

    Article  Google Scholar 

  23. Kothe, C., Medine, D., Boulay, C., Grivich, M., Stenner, T.: Lab streaming layer (2014). https://github.com/sccn/labstreaminglayer

  24. Koutitas, G., Smith, S., Lawrence, G.: Performance evaluation of ar/vr training technologies for ems first responders. Virt. Reality 25(1), 83–94 (2021)

    Article  Google Scholar 

  25. Labedan, P., Darodes-De-Tailly, N., Dehais, F., Peysakhovich, V.: Virtual reality for pilot training: study of cardiac activity. In: VISIGRAPP (2: HUCAPP), pp. 81–88 (2021)

    Google Scholar 

  26. Labedan, P., Dehais, F., Peysakhovich, V.: Evaluation de l’expérience de pilotage d’un avion léger en réalité virtuelle. In: ERGO’IA (2018)

    Google Scholar 

  27. Lawrynczyk, A.: Exploring Virtual Reality Flight Training as a Viable Alternative to Traditional Simulator Flight Training. Ph.D. thesis, Carleton University (2018). https://doi.org/10.22215/etd/2018-13301

  28. Li, L., et al.: Application of virtual reality technology in clinical medicine. Am. J. Transl. Res. 9(9), 3867 (2017)

    Google Scholar 

  29. Markopoulos, E., et al.: Neural network driven eye tracking metrics and data visualization in metaverse and virtual reality maritime safety training (2021)

    Google Scholar 

  30. Meshkati, N.: Heart rate variability and mental workload assessment. In: Hancock, P.A., Meshkati, N. (eds.) Human Mental Workload, Advances in Psychology, vol. 52, pp. 101–115. North-Holland (1988). https://doi.org/10.1016/S0166-4115(08)62384-5, http://www.sciencedirect.com/science/article/pii/S0166411508623845

  31. Oberhauser, M., Dreyer, D., Braunstingl, R., Koglbauer, I.: What’s real about virtual reality flight simulation? Aviation Psychology and Applied Human Factors (2018)

    Google Scholar 

  32. Peysakhovich, V., Monnier, L., Gornet, M., Juaneda, S.: Virtual reality versus real-life training to learn checklists for light aircraft. In: 1st International Workshop on Eye-Tracking in Aviation (2020)

    Google Scholar 

  33. Pottle, J.: Virtual reality and the transformation of medical education. Fut. Healthcare J. 6(3), 181 (2019)

    Article  Google Scholar 

  34. Pourmand, A., Davis, S., Lee, D., Barber, S., Sikka, N.: Emerging utility of virtual reality as a multidisciplinary tool in clinical medicine. Games Health J. 6(5), 263–270 (2017)

    Article  Google Scholar 

  35. Galasko, C.S.: Competencies required to be a competent surgeon. Ann. Roy. Coll. Surg. Engl. 82, 89–90 (2000)

    Google Scholar 

  36. Sakib, M.N., Chaspari, T., Behzadan, A.H.: Physiological data models to understand the effectiveness of drone operation training in immersive virtual reality. J. Comput. Civil Eng. 35(1), 04020053 (2021)

    Article  Google Scholar 

  37. Scannella, S., Peysakhovich, V., Ehrig, F., Lepron, E., Dehais, F.: Assessment of ocular and physiological metrics to discriminate flight phases in real light aircraft. Hum. Fact.: J. Hum. Fact. Ergon. Soc. 60(7), 922–935 (2018). https://doi.org/10.1177/0018720818787135

  38. Silverstein, J.C., Dech, F., Edison, M., Jurek, P., Helton, W., Espat, N.: Virtual reality: immersive hepatic surgery educational environment. Surgery 132(2), 274–277 (2002). https://doi.org/10.1067/msy.2002.125723, http://www.sciencedirect.com/science/article/pii/S0039606002000843

  39. Tarvainen, M.P., Niskanen, J.P., Lipponen, J.A., Ranta-Aho, P.O., Karjalainen, P.A.: Kubios hrv-heart rate variability analysis software. Comput. Methods Progr. Biomed. 113(1), 210–220 (2014)

    Article  Google Scholar 

  40. Thomsen, A.S.S., et al.: Operating room performance improves after proficiency-based virtual reality cataract surgery training. Ophthalmology 124(4), 524–531 (2017)

    Article  Google Scholar 

  41. Togo, F., Takahashi, M.: Heart rate variability in occupational health ___a systematic review. Ind. Health 47(6), 589–602 (2009). https://doi.org/10.2486/indhealth.47.589

  42. Walters, W.T., Walton, J.: Efficacy of virtual reality training for pilots: a review of links between user presence, search task performance, and collaboration within virtual reality. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 65, pp. 919–922. SAGE Publications, Los Angeles (2021)

    Google Scholar 

  43. Witmer, B.G., Singer, M.J.: Measuring presence in virtual environments: a presence questionnaire. Presence 7(3), 225–240 (1998)

    Article  Google Scholar 

  44. Xie, B., et al.: A review on virtual reality skill training applications. Front. Virt. Reality 2, 49 (2021)

    Google Scholar 

  45. Zhang, H.: Head-mounted display-based intuitive virtual reality training system for the mining industry. Int. J. Min. Sci. Technol. 27(4), 717–722 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Stéphane Juaneda, the safety pilot, for his availability to perform flights and his precious know-how in-flight experimentation. Special thanks to Fabrice Bazelot and Benoît Momier, LFCL mechanics, for their help during the configuration of the experiments. A special thanks to Boris Jost and Alexandre Iche, ISAE-SUPAERO students, for their involvement in this project. Thanks to Guillaume Garrouste for the 3D development of the LFCL environment, and Jérôme Dartigues for building the mechanical part of the VRtigo platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Labedan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Labedan, P., Dehais, F., Peysakhovich, V. (2023). Comparison of Cardiac Activity and Subjective Measures During Virtual Reality and Real Aircraft Flight. In: de Sousa, A.A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2021. Communications in Computer and Information Science, vol 1691. Springer, Cham. https://doi.org/10.1007/978-3-031-25477-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25477-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25476-5

  • Online ISBN: 978-3-031-25477-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics