Skip to main content

Exploratory Data Analysis of Population Level Smartphone-Sensed Data

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021)

Abstract

Mobile health involves gathering smartphone-sensor data passively from user’s phones, as they live their lives ’In-the-wild”, periodically annotating data with health labels. Such data is used by machine learning models to predict health. Purely Computational approaches generally do not support interpretability of the results produced from such models. In addition, the interpretability of such results may become difficult with larger study cohorts which make population-level insights desirable. We propose Population Level Exploration and Analysis of smartphone DEtected Symptoms (PLEADES), an interactive visual analytics framework to present smartphone-sensed data. Our approach uses clustering and dimension reduction to discover similar days based on objective smartphone sensor data, across participants for population level analyses. PLEADES enables analysts to apply various clustering and projection algorithms to several smartphone-sensed datasets. PLEADES overlays human-labelled symptom and contextual information from in-the-wild collected smartphone-sensed data, to empower the analyst to interpret findings. Such views enable the contextualization of the symptoms that can manifest in smartphone sensor data. We used PLEADES to visualize two real world in-the-wild collected datasets with objective sensor data and human-provided health labels. We validate our approach through evaluations with data visualization and human context recognition experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdullah, S., Murnane, E.L., Matthews, M., Choudhury, T.: Circadian computing: sensing, modeling, and maintaining biological rhythms. In: Rehg, J.M., Murphy, S.A., Kumar, S. (eds.) Mobile Health, pp. 35–58. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51394-2_3

    Chapter  Google Scholar 

  2. Andrienko, G., Andrienko, N., Rinzivillo, S., Nanni, M., Pedreschi, D., Giannotti, F.: Interactive visual clustering of large collections of trajectories. In: 2009 IEEE Symposium on Visual Analytics Science and Technology, pp. 3–10. IEEE (2009)

    Google Scholar 

  3. van Berkel, N., Goncalves, J., Wac, K., Hosio, S., Cox, A.L.: Human accuracy in mobile data collection (2020)

    Google Scholar 

  4. Boudjeloud-Assala, L., Pinheiro, P., Blansché, A., Tamisier, T., Otjacques, B.: Interactive and iterative visual clustering. Inf. Vis. 15(3), 181–197 (2016)

    Article  Google Scholar 

  5. Boukhechba, M., Chow, P., Fua, K., Teachman, B.A., Barnes, L.E.: Predicting social anxiety from global positioning system traces of college students: feasibility study. JMIR Mental Health 5(3), e10101 (2018)

    Article  Google Scholar 

  6. Boukhechba, M., Daros, A.R., Fua, K., Chow, P.I., Teachman, B.A., Barnes, L.E.: Demonicsalmon: Monitoring mental health and social interactions of college students using smartphones. Smart Health 9, 192–203 (2018)

    Article  Google Scholar 

  7. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. Theory Methods 3(1), 1–27 (1974)

    Article  MATH  Google Scholar 

  8. Cao, N., Lin, Y.R., Gotz, D., Du, F.: Z-glyph: Visualizing outliers in multivariate data. Inf. Vis. 17(1), 22–40 (2018). https://doi.org/10.1177/1473871616686635

    Article  Google Scholar 

  9. Cashman, D., Perer, A., Chang, R., Strobelt, H.: Ablate, variate, and contemplate: Visual analytics for discovering neural architectures. IEEE Trans. Visual Comput. Graphics 26(1), 863–873 (2019)

    Article  Google Scholar 

  10. Cavallo, M., Demiralp, Ç.: Clustrophile 2: Guided visual clustering analysis. IEEE Trans. Visual Comput. Graphics 25(1), 267–276 (2018)

    Article  Google Scholar 

  11. Cavallo, M., Demiralp, Ç.: A visual interaction framework for dimensionality reduction based data exploration. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–13 (2018)

    Google Scholar 

  12. Chatzimparmpas, A., Martins, R.M., Kerren, A.: t-visne: Interactive assessment and interpretation of t-sne projections. IEEE Trans. Visual Comput. Graphics 26(8), 2696–2714 (2020)

    Article  Google Scholar 

  13. Chatzimparmpas, A., Martins, R.M., Jusufi, I., Kerren, A.: A survey of surveys on the use of visualization for interpreting machine learning models. Inf. Vis. 19(3), 207–233 (2020)

    Article  Google Scholar 

  14. Chen, C., Wu, R., Khan, H., Truong, K., Chevalier, F.: Vidde: Visualizations for helping people with copd interpret dyspnea during exercise. In: The 23rd International ACM SIGACCESS Conference on Computers and Accessibility, pp. 1–14 (2021)

    Google Scholar 

  15. Choe, E.K., Lee, B., Kay, M., Pratt, W., Kientz, J.A.: Sleeptight: low-burden, self-monitoring technology for capturing and reflecting on sleep behaviors. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 121–132 (2015)

    Google Scholar 

  16. Choe, E.K., Lee, B., Zhu, H., Riche, N.H., Baur, D.: Understanding self-reflection: how people reflect on personal data through visual data exploration. In: Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare, pp. 173–182 (2017)

    Google Scholar 

  17. Costa, G.: Shift work and health: current problems and preventive actions. Saf. Health Work 1(2), 112–123 (2010)

    Article  Google Scholar 

  18. Davies, D., Bouldin, D.: A cluster separation measure. IEEE Trans. Patter Anal. Mach. Intell. (1979)

    Google Scholar 

  19. Demiralp, Ç.: Clustrophile: A tool for visual clustering analysis. arXiv preprint arXiv:1710.02173 (2017)

  20. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  21. Fujiwara, T., Kwon, O.H., Ma, K.L.: Supporting analysis of dimensionality reduction results with contrastive learning. IEEE Trans. Visual Comput. Graphics 26(1), 45–55 (2019)

    Article  Google Scholar 

  22. Gerych, W., Agu, E., Rundensteiner, E.: Classifying depression in imbalanced datasets using an autoencoder-based anomaly detection approach. In: 2019 IEEE 13th International Conference on Semantic Computing (ICSC), pp. 124–127. IEEE (2019)

    Google Scholar 

  23. Guo, P., Xiao, H., Wang, Z., Yuan, X.: Interactive local clustering operations for high dimensional data in parallel coordinates. In: 2010 IEEE Pacific Visualization Symposium (PacificVis), pp. 97–104. IEEE (2010)

    Google Scholar 

  24. Guo, R., et al.: Comparative visual analytics for assessing medical records with sequence embedding. Visual Informat. 4(2), 72–85 (2020)

    Article  Google Scholar 

  25. Gupta, A., Tong, X., Shaw, C., Li, L., Feehan, L.: FitViz: a personal informatics tool for self-management of rheumatoid arthritis. In: Stephanidis, C. (ed.) HCI 2017. CCIS, vol. 714, pp. 232–240. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58753-0_35

    Chapter  Google Scholar 

  26. Harrington, J.M.: Health effects of shift work and extended hours of work. Occup. Environ. Med. 58(1), 68–72 (2001)

    Article  Google Scholar 

  27. Harrower, M., Brewer, C.A.: Colorbrewer. org: an online tool for selecting colour schemes for maps. Cartographic J. 40(1), 27–37 (2003). https://doi.org/10.1179/000870403235002042

  28. Heng, T.B., Gupta, A., Shaw, C.: Fitviz-ad: A non-intrusive reminder to encourage non-sedentary behaviour. Electron. Imaging 2018(1), 1–332 (2018)

    Google Scholar 

  29. Krueger, R., et al.: Birds-eye - large-scale visual analytics of city dynamics using social location data. Comput, Graphics Forum 38(3), 595–607 (2019). https://doi.org/10.1111/cgf.13713

    Article  Google Scholar 

  30. Kwon, B.C., et al.: Clustervision: Visual supervision of unsupervised clustering. IEEE Trans. Visual Comput. Graphics 24(1), 142–151 (2017)

    Article  Google Scholar 

  31. Li, J.K., et al.: A visual analytics framework for analyzing parallel and distributed computing applications. In: 2019 IEEE Visualization in Data Science (VDS), pp. 1–9. IEEE (2019)

    Google Scholar 

  32. Li, Y., Fujiwara, T., Choi, Y.K., Kim, K.K., Ma, K.L.: A visual analytics system for multi-model comparison on clinical data predictions. Visual Informat. 4(2), 122–131 (2020)

    Article  Google Scholar 

  33. Liang, Y., Zheng, X., Zeng, D.D.: A survey on big data-driven digital phenotyping of mental health. Inf. Fusion 52, 290–307 (2019)

    Article  Google Scholar 

  34. Maaten, L.v.d., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    Google Scholar 

  35. Madan, A., Cebrian, M., Moturu, S., Farrahi, K., et al.: Sensing the “health state’’ of a community. IEEE Pervasive Comput. 11(4), 36–45 (2011)

    Article  Google Scholar 

  36. Mansoor, H., Gerych, W., Buquicchio, L., Chandrasekaran, K., Agu, E., Rundensteiner, E.: Comex: Identifying mislabeled human behavioral context data using visual analytics. In: 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), vol. 2 (2019). https://doi.org/10.1109/COMPSAC.2019.10212

  37. Mansoor, H., Gerych, W., Buquicchio, L., Chandrasekaran, K., Agu, E., Rundensteiner, E.: Delfi: Mislabelled human context detection using multi-feature similarity linking. In: 2019 IEEE Visualization in Data Science (VDS) (2019). https://doi.org/10.1109/VDS48975.2019.8973382

  38. Mansoor, H., et al.: Argus: Interactive visual analysis of disruptions in smartphone-detected bio-behavioral rhythms. Visual Informat. 5(3), 39–53 (2021)

    Article  Google Scholar 

  39. Mansoor., H., et al.: Pleades: Population level observation of smartphone sensed symptoms for in-the-wild data using clustering. In: Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - IVAPP: IVAPP, vol. 3, pp. 64–75. INSTICC, SciTePress (2021). https://doi.org/10.5220/0010204300640075

  40. Mansoor, H., et al.: Visual analytics of smartphone-sensed human behavior and health. IEEE Comput. Graphics Appl. 41(3), 96–104 (2021)

    Article  Google Scholar 

  41. Mead, A.: Review of the development of multidimensional scaling methods. J. Royal Stat. Soc. Ser. D (The Statistician) 41(1), 27–39 (1992)

    Google Scholar 

  42. Melcher, J., Hays, R., Torous, J.: Digital phenotyping for mental health of college students: a clinical review. Evid. Based Ment. Health 23(4), 161–166 (2020)

    Article  Google Scholar 

  43. Mendes, E., Saad, L., McGeeny, K.: (2012). https://news.gallup.com/poll/154685/stay-home-moms-report-depression-sadness-anger.aspx

  44. Mohr, D.C., Zhang, M., Schueller, S.M.: Personal sensing: understanding mental health using ubiquitous sensors and machine learning. Annu. Rev. Clin. Psychol. 13, 23–47 (2017)

    Article  Google Scholar 

  45. Müller, S.R., Peters, H., Matz, S.C., Wang, W., Harari, G.M.: Investigating the relationships between mobility behaviours and indicators of subjective well-being using smartphone-based experience sampling and gps tracking. Eur. J. Pers. 34(5), 714–732 (2020)

    Article  Google Scholar 

  46. NPR: https://developer.foursquare.com/

  47. Pu, J., Xu, P., Qu, H., Cui, W., Liu, S., Ni, L.: Visual analysis of people’s mobility pattern from mobile phone data. In: Proceedings of the 2011 Visual Information Communication-International Symposium, p. 13. ACM (2011)

    Google Scholar 

  48. Ravesloot, C., et al.: Why stay home? temporal association of pain, fatigue and depression with being at home. Disabil. Health J. 9(2), 218–225 (2016)

    Article  Google Scholar 

  49. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  50. Saeb, S., et al.: Mobile phone sensor correlates of depressive symptom severity in daily-life behavior: an exploratory study. J. Med. Internet Res. 17(7), e175 (2015)

    Article  Google Scholar 

  51. Senaratne, H., et al.: Urban mobility analysis with mobile network data: a visual analytics approach. IEEE Trans. Intell. Transp. Syst. 19(5), 1537–1546 (2017)

    Article  Google Scholar 

  52. Shen, Z., Ma, K.L.: Mobivis: A visualization system for exploring mobile data. In: 2008 IEEE Pacific Visualization Symposium, pp. 175–182. IEEE (2008)

    Google Scholar 

  53. Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualizations. In: Proceedings of the IEEE Symposium on Visual Languages, pp. 336–343. IEEE (1996)

    Google Scholar 

  54. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Google Scholar 

  55. Torquati, L., Mielke, G.I., Brown, W.J., Burton, N.W., Kolbe-Alexander, T.L.: Shift work and poor mental health: a meta-analysis of longitudinal studies. Am. J. Public Health 109(11), e13–e20 (2019)

    Article  Google Scholar 

  56. Vaizman, Y., Ellis, K., Lanckriet, G., Weibel, N.: Extrasensory app: Data collection in-the-wild with rich user interface to self-report behavior. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018)

    Google Scholar 

  57. Van Berkel, N., Ferreira, D., Kostakos, V.: The experience sampling method on mobile devices. ACM Comput. Surv. (CSUR) 50(6), 1–40 (2017)

    Article  Google Scholar 

  58. Vetter, C.: Circadian disruption: What do we actually mean? Euro. J. Neurosc.(2018)

    Google Scholar 

  59. Wang, R., et al.: Studentlife: assessing mental health, academic performance and behavioral trends of college students using smartphones. In: Proceedings of the 2014 ACM International Joint Conference On Pervasive And Ubiquitous Computing, pp. 3–14 (2014)

    Google Scholar 

  60. Wang, W., et al.: Social sensing: Assessing social functioning of patients living with schizophrenia using mobile phone sensing. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2020)

    Google Scholar 

  61. Wenskovitch, J., Dowling, M., North, C.: With respect to what? simultaneous interaction with dimension reduction and clustering projections. In: Proceedings of the 25th International Conference on Intelligent User Interfaces, pp. 177–188 (2020)

    Google Scholar 

  62. Wenskovitch, J., North, C.: Pollux: Interactive cluster-first projections of high-dimensional data. In: 2019 IEEE Visualization in Data Science (VDS), pp. 38–47. IEEE (2019)

    Google Scholar 

  63. Wenskovitch Jr., J.E.: Dimension Reduction and Clustering for Interactive Visual Analytics. Ph.D. thesis, Virginia Tech (2019)

    Google Scholar 

  64. Weston, G., Zilanawala, A., Webb, E., Carvalho, L.A., McMunn, A.: Long work hours, weekend working and depressive symptoms in men and women: findings from a uk population-based study. J. Epidemiol. Community Health 73(5), 465–474 (2019)

    Article  Google Scholar 

  65. Zhao, Y., et al.: Visual analytics for health monitoring and risk management in CARRE. In: El Rhalibi, A., Tian, F., Pan, Z., Liu, B. (eds.) Edutainment 2016. LNCS, vol. 9654, pp. 380–391. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40259-8_33

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Mansoor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mansoor, H. et al. (2023). Exploratory Data Analysis of Population Level Smartphone-Sensed Data. In: de Sousa, A.A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2021. Communications in Computer and Information Science, vol 1691. Springer, Cham. https://doi.org/10.1007/978-3-031-25477-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25477-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25476-5

  • Online ISBN: 978-3-031-25477-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics